Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

UPLC-Q-TOF-MS and NMR identification of structurally different A-type procyanidins from peanut skin and their inhibitory effect on acrylamide.

Tytuł:
UPLC-Q-TOF-MS and NMR identification of structurally different A-type procyanidins from peanut skin and their inhibitory effect on acrylamide.
Autorzy:
Zhao L; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
Yan F; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
Lu Q; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China.; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China.
Tang C; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China.
Wang X; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China.
Liu R; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China.; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China.
Źródło:
Journal of the science of food and agriculture [J Sci Food Agric] 2022 Dec; Vol. 102 (15), pp. 7062-7071. Date of Electronic Publication: 2022 Jul 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2005-> : Chichester, West Sussex : John Wiley & Sons
Original Publication: London, Society of Chemical Industry.
MeSH Terms:
Proanthocyanidins*/chemistry
Catechin*/chemistry
Humans ; Arachis/chemistry ; Polyphenols ; Acrylamide
References:
Rifai L and Saleh FA, A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. Int J Toxicol 39:93-102 (2020).
Capuano E and Fogliano V, Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Sci Technol 44:793-810 (2011).
Knize MG, Salmon CP, Pais P and Felton JS, Food heating and the formation of heterocyclic aromatic amine and polycyclic aromatic hydrocarbon mutagens/carcinogens. Adv Exp Med Biol 459:179-193 (1999).
Zamora R and Hidalgo FJ, Formation of heterocyclic aromatic amines with the structure of aminoimidazoazarenes in food products. Food Chem 313:126-128 (2020).
Rannou C, Laroque D, Renault E, Prost C and Serot T, Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Res Int 90:154-176 (2016).
Mottram DS, Wedzicha BL and Dodson AT, Acrylamide is formed in the Maillard reaction. Nature 419:448-449 (2002).
Yu S, Chen Z, Meng H and Chen M, Addition of lipophilic grape seed proanthocyanidin effectively reduces acrylamide formation. J Sci Food Agric 100:1213-1219 (2020).
Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK et al., Acrylamide formation mechanism in heated foods. J Agric Food Chem 51:4782-4787 (2003).
Maan AA, Anjum MA, Khan MKI, Nazir A, Saeed F, Afzaal M et al., Acrylamide formation and different mitigation strategies during food processing - a review. Food Rev Int 1-18:70-87 (2020).
Morales G, Jimenez M, Garcia O, Mendoza MR and Beristain CI, Effect of natural extracts on the formation of acrylamide in fried potatoes. LWT-Food Sci Technol 58:587-593 (2014).
Xu C, Yagiz Y, Marshall S, Li Z, Simonne A, Lu J et al., Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chem 182:200-208 (2015).
Zhu F, Cai YZ, Ke JX and Corke H, Evaluation of the effect of plant extracts and phenolic compounds on reduction of acrylamide in an asparagine/glucose model system by RP-HPLC-DAD. J Sci Food Agric 89:1674-1681 (2009).
Pizzolitto RP, Dambolena JS, Zunino MP, Larrauri M, Grosso NR, Nepote V et al., Activity of natural compounds from peanut skins on Fusarium verticillioides growth and fumonisin B-1 production. Ind Crops Prod 47:286-290 (2013).
Wang XY, Zhai WY, Wu CT, Ma B, Zhang JM, Zhang HF et al., Procyanidins-crosslinked aortic elastin scaffolds with distinctive anti-calcification and biological properties. Acta Biomater 16:81-93 (2015).
Zhang S, Li L, Cui Y, Luo L, Li Y, Zhou P et al., Preparative high-speed counter-current chromatography separation of grape seed proanthocyanidins according to degree of polymerization. Food Chem 219:399-407 (2017).
Esatbeyoglu T, Wray V and Winterhalter P, Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography. Food Chem 179:278-289 (2015).
Ou KQ, Sarnoski P, Schneider KR, Song KJ, Khoo C and Gu LW, Microbial catabolism of procyanidins by human gut microbiota. Mol Nutr Food Res 58:2196-2205 (2014).
Zhu F, Cai YZ, Ke JX and Corke H, Dietary plant materials reduce acrylamide formation in cookie and starch-based model systems. J Sci Food Agric 91:2477-2483 (2011).
Cheng KW, Shi JJ, Ou SY, Wang M and Jiang Y, Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps. J Agric Food Chem 58:309-312 (2010).
Qi Y, Zhang H, Wu G, Zhang H, Gu L, Wang L et al., Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chem 250:98-104 (2018).
Zhao L, Zhou T, Yan F, Zhu X, Lu Q and Liu R, Synergistic inhibitory effects of procyanidin B2 and catechin on acrylamide in food matrix. Food Chem 296:94-99 (2019).
Chen L, Yan FF, Chen WB, Zhao L, Zhang JL, Lu Q et al., Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145. Chem Biol Interact 288:12-23 (2018).
Zhang H, Yang Y and Ma C, Structures and antioxidant and intestinal disaccharidase inhibitory activities of A-type proanthocyanidins from peanut skin. J Agric Food Chem 61:8814-8820 (2013).
Dong XQ, Zou B, Zhang Y, Ge ZZ, Du J and Li CM, Preparation of A-type proanthocyanidin dimers from peanut skins and persimmon pulp and comparison of the antioxidant activity of A-type and B-type dimers. Fitoterapia 91:128-139 (2013).
Li S, Xiao J, Chen L, Hu C, Chen P, Xie B et al., Identification of A-series oligomeric procyanidins from pericarp of Litchi chinensis by FT-ICR-MS and LC-MS. Food Chem 135:31-38 (2012).
Karonen M, Loponen J, Ossipov V and Pihlaja K, Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chim Acta 522:105-112 (2004).
Shui G and Leong LP, Analysis of polyphenolic antioxidants in star fruit using liquid chromatography and mass spectrometry. J Chromatogr A 1022:67-75 (2004).
Esatbeyoglu T, Juadjur A, Wray V and Winterhalter P, Semisynthetic preparation and isolation of dimeric procyanidins B1-B8 from roasted hazelnut skins (Corylus avellana L.) on a large scale using countercurrent chromatography. J Agric Food Chem 62:7101-7110 (2014).
Esatbeyoglu T, Wray V and Winterhalter P, Identification of two novel Prodelphinidin A-type dimers from roasted hazelnut skins ( Corylus avellana L.). J Agric Food Chem 61:12640-12645 (2013).
Nam J-W, Phansalkar RS, Lankin DC, McAlpine JB, Leme-Kraus AA, Vidal CMP et al., Absolute configuration of native Oligomeric Proanthocyanidins with dentin biomodification potency. J Org Chem 82:1316-1329 (2017).
Lou HX, Yamazaki Y, Sasaki T, Uchida M, Tanaka H and Oka S, A-type proanthocyanidins from peanut skins. Phytochemistry 51:297-308 (1999).
Sarnoski PJ, Johnson JV, Reed KA, Tanko JM and O'Keefe SF, Separation and characterisation of proanthocyanidins in Virginia type peanut skins by LC-MSn. Food Chem 131:927-939 (2012).
Dudek MK, Glinski VB, Davey MH, Sliva D, Kazmierski S and Glinski JA, Trimeric and tetrameric A-type Procyanidins from Peanut skins. J Nat Prod 80:415-426 (2017).
Killday KB, Davey MH, Glinski JA, Duan PG, Veluri R, Proni G et al., Bioactive A-type Proanthocyanidins from Cinnamomum cassia. J Nat Prod 74:1833-1841 (2011).
Jeong DE, Cho JY, Lee YG, Jeong HY, Lee HJ and Moon JH, Isolation of five proanthocyanidins from pear (Pyrus pyrifolia Nakai) fruit peels. Food Sci Biotechnol 26:1209-1215 (2017).
Oral RA, Dogan M and Sarioglu K, Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage. Food Chem 142:423-429 (2014).
Li Z, Kai L, Xiaohong W and Rui L, Isolation and identification of procyanidin A1 from peanut skins and its inhibitory effect on the formation of acrylamide. Food Sci 39:1-6 (2018).
Huang M, Wang Q, Chen X and Zhang Y, Unravelling effects of flavanols and their derivatives on acrylamide formation via support vector machine modelling. Food Chem 221:178-186 (2017).
Cheng J, Chen X, Zhao S and Zhang Y, Antioxidant-capacity-based models for the prediction of acrylamide reduction by flavonoids. Food Chem 168:90-99 (2015).
Cai Y, Zhang ZH, Jiang SS, Yu M, Huang CH, Qiu RX et al., Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. J Hazard Mater 268:1-5 (2014).
Totlani VM and Peterson DG, Epicatechin carbonyl-trapping reactions in aqueous Maillard systems: identification and structural elucidation. J Agric Food Chem 54:7311-7318 (2006).
Duenas M, Gonzalez-Manzano S, Gonzalez-Paramas A and Santos-Buelga C, Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. J Pharm Biomed Anal 51:443-449 (2010).
Contributed Indexing:
Keywords: acrylamide; identification; inhibition; procyanidins; structure
Substance Nomenclature:
4852-22-6 (procyanidin)
0 (Proanthocyanidins)
8R1V1STN48 (Catechin)
0 (Polyphenols)
20R035KLCI (Acrylamide)
Entry Date(s):
Date Created: 20220612 Date Completed: 20221103 Latest Revision: 20221103
Update Code:
20240105
DOI:
10.1002/jsfa.12067
PMID:
35690888
Czasopismo naukowe
Background: Flavan-3-ol polyphenols have been shown to have great advantages in inhibiting acrylamide formation. However, flavan-3-ol polyphenols have structures that vary significantly, and existing research has been focused mainly on the effects of B-type procyanidins and structural units of procyanidins. This study aims to separate structurally different A-type procyanidins from peanut skin and compare their inhibitory effects on acrylamide in an asparagine-glucose simulation system.
Results: Five compounds were separated and identified from peanut skin, including epicatechin-(2β → O → 7, 4β → 8)-ent-epicatechin, epicatechin-(2β → O → 7, 4β → 8)-epicatechin, epicatechin-(2β → O → 7, 4β → 8)-epicatechin-(4β → 6)-catechin, epicatechin-(2β → O → 7, 4β → 8)-epicatechin-(4β → 8)-catechin, and epicatechin-(4β → 6)-epicatechin-(4β → 8, 2β → O → 7)-catechin. All the procyanidins could reduce the acrylamide content within a certain range of concentrations. The highest inhibition rates followed the order of compound 5 (A-type trimer) > compound 1 (A-type dimer) > compound 2 (A-type dimer) > compound 3 (A-type trimer) > compound 4 (A-type trimer). Comparison analysis showed that structurally different A-type procyanidins have various inhibitory effects on acrylamide production, which may be related to their spatial configuration and bond connection mode.
Conclusion: Overall, our findings help us to gain a better understanding of the relationship between the structure of procyanidins and their inhibitory effects on acrylamide, particularly the inhibitory effect of A-type. There are potential practical implications if people use A-type procyanidins as acrylamide inhibitors in hot processed foods in the future. © 2022 Society of Chemical Industry.
(© 2022 Society of Chemical Industry.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies