Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Variability and time series trend analysis of rainfall in the mid-hill sub humid zone: a case study of Nauni.

Tytuł:
Variability and time series trend analysis of rainfall in the mid-hill sub humid zone: a case study of Nauni.
Autorzy:
Mehta P; Dept. of Environmental Science, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan (HP), India. .
Jangra MS; Dept. of Environmental Science, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan (HP), India.
Bhardwaj SK; Dept. of Environmental Science, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan (HP), India.
Paul S; India Meteorological Department, Meteorological Centre, Shimla, India.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Nov; Vol. 29 (53), pp. 80466-80476. Date of Electronic Publication: 2022 Jun 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Rain*
Climate Change*
Time Factors ; Agriculture/methods ; Seasons
References:
Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 12:1481–1484. https://doi.org/10.1126/science. (PMID: 10.1126/science.1160787)
Apata TG (2010) Effects of global climate change on Nigerian agriculture: an empirical analysis. J Appl Stat 2:45–60.
Attri S D, Tyagi A (2010) Climatic profile of India. Environment Monitoring and Research Centre, India Meteorological Department, Lodi Road, New Delhi pp 122.
Connors S, Piddock R, Alle M et al (2019) Frequently asked questions Intergovernmental Panel on Climate Change (IPCC). ( www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_FAQ_Low_Res.pdf ).
Dash S, Jenamani R, Kalsi S, Panda S (2007) Some evidence of climate change in twentieth-century India. Clim Change 85:299–321. (PMID: 10.1007/s10584-007-9305-9)
Government of India (2021) Statement on climate of India during 2020. Press release, 4 January.  https://reliefweb.int/sites/reliefweb.int/files/resources/Statement_of_Climate_of_India-2020.pdf . Accessed 4 January 2021.
Jaswal AK, Bhan SC, Karandikar AS, Gujar MK (2015) Seasonal and annual rainfall trends in Himachal Pradesh during 1951–2005. Mausam 66:247–264. (PMID: 10.54302/mausam.v66i2.534)
Kahn M E, Mohaddes K, Ng R N, Pesaran M H, Raissi M, Yang J C (2019) Long-term macroeconomic effects of climate change: a cross-country analysis. National Bureau of Economic Res. pp 1–59. www.imf.org/en/Publications/WP/Issues/2019/10/11/Long-Term-Macroeconomic-Effects-of-Climate-Change-A-Cross-Country-Analysis-48691 . Accessed 11 October 2019.
Kaur N, Kaur P (2019) Maize yield projections under different climate change scenarios in different districts of Punjab. J Agrometeorol 21:154–158. (PMID: 10.54386/jam.v21i2.225)
Kaur N, Yousuf A, Singh MJ (2021) Long term rainfall variability and trend analysis in lower Shivaliks of Punjab. India Mausam 72:571–582. (PMID: 10.54302/mausam.v72i3.1307)
Kendall M G (1975) Rank correlation methods”, 4th ed. Charles Griffin, London. Sen, P. K., 1968 Estimates of the regression coefficient based on Kendall’s Tau. J American Stat Ass. 63: 1397–1412.
Krishan R, Ayush C, Bhaskar N, Pingale S, Khare D (2018) Long term rainfall data analysis over Eastern Ganga canal command area. Ind J Soil Cons 45:338–347.
Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty, S (2020) Assessment of climate change over the Indian region. A report of the Ministry of Earth Sciences (MoES), Government of India. Singapore: Springer.1–243.
Kumar V, Jain SK, Singh Y (2010) Analysis of long term rainfall trends in India. Hydro Sci J 55:484–496. (PMID: 10.1080/02626667.2010.481373)
Power K, Axelsson J, Wangdi N, Zhang Q (2021) Regional and local impacts of the ENSO and IOD events of 2015 and 2016 on the Indian Summer Monsoon—a Bhutan case study. Atmosphere 12:954. https://doi.org/10.3390/atmos12080954. (PMID: 10.3390/atmos12080954)
Rathod IM, Aruchamy S (2010) Spatial analysis of rainfall variation in Coimbatore district Tamil Nadu using GIS. Int J Geo and Geosci 1:106–118.
SCCAP (2012) State strategy and action plan on climate change, Department of Environment Science and Technology, Government of Himachal Pradesh, Shimla.
Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J American Stat Ass 63:1379–1389. (PMID: 10.1080/01621459.1968.10480934)
USAID – United States Agency for International Development (2017) Climate risk profile: India. Washington DC: USAID ( www.climatelinks.org/resources/climate-risk-profile-india ).
Vennila G (2007) Rainfall variation analysis of vattamalaikarai sub-basin Tamil Nadu. J Appl Hydro 20:50.
Contributed Indexing:
Keywords: Linear regression model; Mann–Kendall; Rainfall variability; Sen’s slope; Trends
Entry Date(s):
Date Created: 20220618 Date Completed: 20221028 Latest Revision: 20221028
Update Code:
20240105
DOI:
10.1007/s11356-022-21507-0
PMID:
35716306
Czasopismo naukowe
The spatiotemporal variability of rainfall, particularly in the context of climate change, has been imperative for examining the cropping patterns, farming sustainable crop production, and food security in rainfed areas. To that end, trend analysis was done to study the change in rainfall patterns in the mid-hills of Himachal Pradesh. The study investigated the historical rainfall data from 1971 to 2020 on a monthly, annual, seasonal, and decadal basis by using the variability analysis methods, viz., standard deviation (SD), coefficient of variance (CV), and transformed annual precipitation departure (Z). The trend analysis was also done by Mann-Kendall (MK) and Sen's slope estimator (SSE) test and linear regression model. The annual rainfall in the region was 1115.1 mm, which showed a decreasing trend (Z =  - 0.79 mm/year). Based on the linear regression model, the decrease in annual rainfall was about - 2.28 mm/year. The monthly and seasonal variability of rainfall exhibited a sensitivity to change. The months of January, April, July, and September showed an increasing trend, whereas the rest of the other months showed a decreasing trend. The seasonal rainfall (summer, monsoon, and post-monsoon) showed a decreasing trend, whereas the winter season depicted an increasing trend. During the entire study period, 1988 recorded as the wettest year, with highest annual rainfall of about 2205.0 mm and monsoon rainfall of about 1653.0 mm. The highest annual (2205.0 mm) and monsoon (1653.0 mm) rainfall was recorded in the year 1988. The decadal analysis of the rainfall on an annual basis revealed a decrease in rainfall during the periods 1971-1980, 2001-2010, and 2011-2020 as compared to 1981-1990 and 1991-2000. The rainfall over the study region confirms the strength of the change in trend. Thus, the erratic rainfall pattern makes the cropping calendar shorter and affects the agricultural productivity.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies