Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A bioinspired sequential energy transfer system constructed via supramolecular copolymerization.

Tytuł:
A bioinspired sequential energy transfer system constructed via supramolecular copolymerization.
Autorzy:
Han Y; CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Zhang X; CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Ge Z; CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Gao Z; Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
Liao R; CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China. .
Wang F; CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China. .
Źródło:
Nature communications [Nat Commun] 2022 Jun 21; Vol. 13 (1), pp. 3546. Date of Electronic Publication: 2022 Jun 21.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Photosynthesis*
Solar Energy*
Biomimetics/methods ; Energy Transfer
References:
Nat Chem. 2011 Sep 23;3(10):763-74. (PMID: 21941248)
Photosynth Res. 1988 Feb;15(2):177-89. (PMID: 24430862)
J Am Chem Soc. 2007 Aug 8;129(31):9819-28. (PMID: 17629275)
Proc Natl Acad Sci U S A. 1998 May 26;95(11):5935-41. (PMID: 9600895)
J Am Chem Soc. 2003 Jun 18;125(24):7336-43. (PMID: 12797808)
Angew Chem Int Ed Engl. 2021 Jun 14;60(25):14076-14082. (PMID: 33829624)
Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):790-5. (PMID: 17215361)
Nat Commun. 2019 Aug 19;10(1):3735. (PMID: 31427582)
Nat Chem Biol. 2014 Jul;10(7):492-501. (PMID: 24937067)
J Am Chem Soc. 2008 Feb 27;130(8):2535-45. (PMID: 18232686)
J Am Chem Soc. 2019 May 29;141(21):8473-8481. (PMID: 31006232)
J Am Chem Soc. 2021 Jan 13;143(1):382-389. (PMID: 33348987)
Nat Commun. 2014 Dec 11;5:5615. (PMID: 25504073)
J Am Chem Soc. 2011 Jan 19;133(2):316-25. (PMID: 21182256)
Q Rev Biophys. 2006 Aug;39(3):227-324. (PMID: 17038210)
Adv Mater. 2010 Mar 19;22(11):1233-6. (PMID: 20437510)
Angew Chem Int Ed Engl. 2016 Feb 18;55(8):2759-63. (PMID: 26799735)
J Am Chem Soc. 2008 Feb 27;130(8):2485-92. (PMID: 18247606)
J Am Chem Soc. 2007 Mar 21;129(11):3104-9. (PMID: 17319656)
Acc Chem Res. 2005 Aug;38(8):612-23. (PMID: 16104684)
J Am Chem Soc. 2021 Jan 27;143(3):1313-1317. (PMID: 33448855)
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8525-30. (PMID: 19435848)
Chem Commun (Camb). 2015 Aug 21;51(65):12939-42. (PMID: 26185803)
Angew Chem Int Ed Engl. 2012 Feb 27;51(9):2088-92. (PMID: 22282404)
Angew Chem Int Ed Engl. 2007;46(9):1525-8. (PMID: 17225225)
Angew Chem Int Ed Engl. 2016 Jul 4;55(28):7952-7. (PMID: 27187799)
J Phys Chem B. 2012 May 3;116(17):5291-301. (PMID: 22443806)
Chem Commun (Camb). 2020 Jun 2;56(44):5949-5952. (PMID: 32347244)
J Org Chem. 2020 Aug 21;85(16):10561-10573. (PMID: 32806092)
Angew Chem Int Ed Engl. 2020 Jun 15;59(25):10095-10100. (PMID: 31625651)
Angew Chem Int Ed Engl. 2003 May 16;42(19):2140-4. (PMID: 12761742)
Nat Commun. 2018 Sep 28;9(1):3977. (PMID: 30266899)
Chem Soc Rev. 2008 Jan;37(1):109-22. (PMID: 18197337)
Angew Chem Int Ed Engl. 2017 Aug 28;56(36):10730-10734. (PMID: 28661052)
Nat Mater. 2006 Sep;5(9):683-96. (PMID: 16946728)
J Am Chem Soc. 2021 Jan 13;143(1):399-408. (PMID: 33371666)
Angew Chem Int Ed Engl. 2017 Oct 2;56(41):12466-12470. (PMID: 28799686)
Photosynth Res. 2014 Jul;121(1):35-48. (PMID: 24604033)
Acc Chem Res. 2013 Nov 19;46(11):2498-512. (PMID: 23865851)
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12736-41. (PMID: 18755898)
Phys Chem Chem Phys. 2018 Jan 31;20(5):3200-3209. (PMID: 29067390)
J Am Chem Soc. 2008 May 7;130(18):5929-39. (PMID: 18393414)
J Chem Phys. 2007 Aug 28;127(8):084509. (PMID: 17764271)
Chem Rev. 2015 Aug 12;115(15):7502-42. (PMID: 26040205)
Small. 2008 Nov;4(11):2074-8. (PMID: 18855971)
Chem Rev. 2017 Jan 25;117(2):249-293. (PMID: 27428615)
J Am Chem Soc. 2005 Dec 28;127(51):17984-5. (PMID: 16366532)
Soft Matter. 2021 Jan 21;17(3):425-446. (PMID: 33400748)
Entry Date(s):
Date Created: 20220621 Date Completed: 20220623 Latest Revision: 20220729
Update Code:
20240105
PubMed Central ID:
PMC9213434
DOI:
10.1038/s41467-022-31094-w
PMID:
35729110
Czasopismo naukowe
Sequential energy transfer is ubiquitous in natural light harvesting systems to make full use of solar energy. Although various artificial systems have been developed with the biomimetic sequential energy transfer character, most of them exhibit the overall energy transfer efficiency lower than 70% due to the disordered organization of donor/acceptor chromophores. Herein a sequential energy transfer system is constructed via supramolecular copolymerization of σ-platinated (hetero)acenes, by taking inspiration from the natural light harvesting of green photosynthetic bacteria. The absorption and emission transitions of the three designed σ-platinated (hetero)acenes range from visible to NIR region through structural variation. Structural similarity of these monomers faciliates supramolecular copolymerization in apolar media via the nucleation-elongation mechanism. The resulting supramolecular copolymers display long diffusion length of excitation energy (> 200 donor units) and high exciton migration rates (~10 14  L mol -1 s -1 ), leading to an overall sequential energy transfer efficiency of 87.4% for the ternary copolymers. The superior properties originate from the dense packing of σ-platinated (hetero)acene monomers in supramolecular copolymers, mimicking the aggregation mode of bacteriochlorophyll pigments in green photosynthetic bacteria. Overall, directional supramolecular copolymerization of donor/acceptor chromophores with high energy transfer efficiency would provide new avenues toward artificial photosynthesis applications.
(© 2022. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies