Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The timing, duration and magnitude of the 8.2 ka event in global speleothem records.

Tytuł:
The timing, duration and magnitude of the 8.2 ka event in global speleothem records.
Autorzy:
Parker SE; School of Archaeology, Geography and Environmental Science, Reading University, Whiteknights, Reading, RG6 6AH, UK. .
Harrison SP; School of Archaeology, Geography and Environmental Science, Reading University, Whiteknights, Reading, RG6 6AH, UK.
Źródło:
Scientific reports [Sci Rep] 2022 Jun 22; Vol. 12 (1), pp. 10542. Date of Electronic Publication: 2022 Jun 22.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Climate Change*
Fresh Water*
Asia ; Europe ; Oxygen Isotopes/analysis
References:
Dykoski, C. A. et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 233, 71–86 (2005). (PMID: 10.1016/j.epsl.2005.01.036)
Morrill, C., Overpeck, J. T. & Cole, J. E. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 13, 465–476 (2003). (PMID: 10.1191/0959683603hl639ft)
Stríkis, N. M. et al. Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil. Geology 39, 1075–1078 (2011). (PMID: 10.1130/G32098.1)
Bini, M. et al. The 4.2 ka BP Event in the Mediterranean region: an overview. Clim. Past. 15, 555–577 (2019). (PMID: 10.5194/cp-15-555-2019)
Kaniewski, D., Marriner, N., Cheddadi, R., Guiot, J. & Van Campo, E. The 4.2 ka BP event in the Levant. Clim. Past 14, 1529–1542 (2018). (PMID: 10.5194/cp-14-1529-2018)
Scuderi, L. A., Yang, X., Ascoli, S. E. & Li, H. The 4.2 ka BP event in northeastern China: a geospatial perspective. Clim. Past. 15, 367–375 (2019). (PMID: 10.5194/cp-15-367-2019)
Toth, L. T. & Aronson, R. B. The 4.2 ka event, ENSO, and coral reef development. Clim. Past. 15, 105–119 (2019). (PMID: 10.5194/cp-15-105-2019)
Yan, M. & Liu, J. Physical processes of cooling and mega-drought during the 4.2 ka BP event: results from TraCE-21ka simulations. Clim. Past. 15, 265–277 (2019). (PMID: 10.5194/cp-15-265-2019)
Vinther, B. M., et al. A synchronized dating of three Greenland ice cores throughout the Holocene. J. Geophys. Res. Atmos. 111 (2006).
Alley, R. B. et al. Holocene climatic instability: a prominent, widespread event 8200 year ago. Geology 25, 483–486 (1997). (PMID: 10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2)
Barber, D. C. et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999). (PMID: 10.1038/22504)
Thomas, E. R. et al. The 8.2ka event from Greenland ice cores. Quat. Sci. Rev. 26, 70–81 (2007). (PMID: 10.1016/j.quascirev.2006.07.017)
Morrill, C. et al. Proxy benchmarks for intercomparison of 8.2 ka simulations. Clim. Past. 9, 423–432 (2013). (PMID: 10.5194/cp-9-423-2013)
Morrill, C., LeGrande, A. N., Renssen, H., Bakker, P. & Otto-Bliesner, B. L. Model sensitivity to North Atlantic freshwater forcing at 8.2 ka. Clim. Past. 9, 955–968 (2013). (PMID: 10.5194/cp-9-955-2013)
Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C. & Haywood, A. M. The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet. Sci. Lett. 473, 205–214 (2017). (PMID: 10.1016/j.epsl.2017.06.011)
Morrill, C., Ward, E. M., Wagner, A. J., Otto-Bliesner, B. L. & Rosenbloom, N. Large sensitivity to freshwater forcing location in 8.2 ka simulations. Paleoceanography 29, 930–945 (2014). (PMID: 10.1002/2014PA002669)
Parker, S. E. et al. A data–model approach to interpreting speleothem oxygen isotope records from monsoon regions. Clim. Past. 17, 1119–1138 (2021). (PMID: 10.5194/cp-17-1119-2021)
Lachniet, M. S. Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev. 28, 412–432 (2009). (PMID: 10.1016/j.quascirev.2008.10.021)
Sinha, A. et al. Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat. Commun. 6, 6309 (2015). (PMID: 2568687710.1038/ncomms7309)
Cheng, H. et al. Timing and structure of the 8.2 kyr BP event inferred from δ O records of stalagmites from China, Oman, and Brazil. Geology 37, 1007–1010 (2009). (PMID: 10.1130/G30126A.1)
Liu, Z. & Alexander, M. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 45 (2007).
Chiang, J. C., Cheng, W. & Bitz, C. M. Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys. Res. Lett. 35 (2008).
Wang, Y. J. et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001). (PMID: 1174319910.1126/science.1064618)
Cheng, H. et al. Chinese stalagmite paleoclimate researches: a review and perspective. Sci. China Earth Sci. 62, 1489–1513 (2019). (PMID: 10.1007/s11430-019-9478-3)
Owen, R. A. et al. Calcium isotopes in caves as a proxy for aridity: Modern calibration and application to the 8.2 kyr event. Earth Planet. Sci. Lett. 443, 129–138 (2016). (PMID: 10.1016/j.epsl.2016.03.027)
Liu, Y. & Hu, C. Quantification of southwest China rainfall during the 8.2 ka BP event with response to North Atlantic cooling. Clim. Past. 12, 1583–1590 (2016). (PMID: 10.5194/cp-12-1583-2016)
Gingele, F., De Deckker, P. & Norman, M. Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited offshore the River Murray Mouth. Earth Planet. Sci. Lett. 255, 257–272 (2007). (PMID: 10.1016/j.epsl.2006.12.019)
Wagner, A. J., Morrill, C., Otto-Bliesner, B. L., Rosenbloom, N. & Watkins, K. R. Model support for forcing of the 8.2 ka event by meltwater from the Hudson Bay ice dome. Clim. Dyn. 41, 2855–2873 (2013). (PMID: 10.1007/s00382-013-1706-z)
Zhao, Y. & Harrison, S. P. Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim. Dyn. 39, 1457–1487 (2012). (PMID: 10.1007/s00382-011-1193-z)
D’Agostino, R. et al. Contrasting southern hemisphere monsoon response: MidHolocene orbital forcing versus future greenhouse gas-induced global warming. J. Clim. 33, 9595–9613 (2020). (PMID: 10.1175/JCLI-D-19-0672.1)
LoDico, J. M., Flower, B. P. & Quinn, T. M. Subcentennial-scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene. Paleoceanography 21 (2006).
Fensterer, C. et al. Millennial-scale climate variability during the last 12.5 ka recorded in a Caribbean speleothem. Earth Planet. Sci. Lett. 361, 143–151 (2013). (PMID: 10.1016/j.epsl.2012.11.019)
Affolter, S. et al. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019). (PMID: 31183398655118410.1126/sciadv.aav3809)
Ellison, C. R. W., Chapman, M. R. & Hall, I. R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, 1929–1932 (2006). (PMID: 1680953510.1126/science.1127213)
Farmer, E. J., Chapman, M. R. & Andrews, J. E. Centennial‐scale Holocene North Atlantic surface temperatures from Mg/Ca ratios in Globigerina bulloides. Geochem. Geophys. Geosyst. 9 (2008).
Thornalley, D. J. R., Elderfield, H. & McCave, I. N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic. Nature 457, 711–714 (2009). (PMID: 1919444710.1038/nature07717)
Surić, M. et al. Holocene hydroclimate changes in continental Croatia recorded in speleothem δ13C and δ18O from Nova Grgosova Cave. Holocene 31, 1401–1416 (2021). (PMID: 10.1177/09596836211019120)
Fohlmeister, J. et al. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Clim. Past. 8, 1751–1764 (2012). (PMID: 10.5194/cp-8-1751-2012)
Fleitmann, D. et al. Holocene forcing of the Indian Monsoon recorded in a stalagmite from southern Oman. Science 300, 1737–1739 (2003). (PMID: 1280554510.1126/science.1083130)
Wang, Y. et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308, 854–857 (2005). (PMID: 1587921610.1126/science.1106296)
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P. & Jetel, M. Structure and origin of Holocene cold events. Quat. Sci. Rev. 30, 3109–3123 (2011). (PMID: 10.1016/j.quascirev.2011.07.010)
Wanner, H. & Buetikofer, J. Holocene Bond Cycles: real or imaginary. Geografie 113, 338–349 (2008). (PMID: 10.37040/geografie2008113040338)
Finné, M., Holmgren, K., Sundqvist, H. S., Weiberg, E. & Lindblom, M. Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years: a review. J. Archaeol. Sci. 38, 3153–3173 (2011). (PMID: 10.1016/j.jas.2011.05.007)
Burstyn, Y. et al. Speleothems from the Middle East: an example of water limited environments in the SISAL database. Quaternary 2, 16 (2019). (PMID: 10.3390/quat2020016)
Ön, Z. B., Greaves, A. M., Akçer-Ön, S. & Özeren, M. S. A Bayesian test for the 4.2 ka BP abrupt climatic change event in southeast Europe and southwest Asia using structural time series analysis of paleoclimate data. Clim. Change 165, (2021).
Railsback, L. B. et al. The timing, two-pulsed nature, and variable climatic expression of the 4.2 ka event: a review and new high-resolution stalagmite data from Namibia. Quat. Sci. Rev. 186, 78–90 (2018). (PMID: 10.1016/j.quascirev.2018.02.015)
Bradley, R. S. & Bakke, J. Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?. Clim. Past. 15, 1665–1676 (2019). (PMID: 10.5194/cp-15-1665-2019)
Comas-Bru, L., Atsawawaranunt, K., Harrison, S. P. & SISAL working group members. SISAL (Speleothem Isotopes Synthesis and AnaLysis Working group) database version 2.0. https://doi.org/10.17864/1947.242 (2020).
Zeileis, A., Leisch, F., Hornik, K. & Christian, K. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38 (2002). (PMID: 10.18637/jss.v007.i02)
Zeileis, A., Kleiber, C., Kraemer, W. & Hornik, K. Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44, 109–123 (2003). (PMID: 10.1016/S0167-9473(03)00030-6)
Topál, D., Matyasovszky, I., Kern, Z. & Hatvani, I. G. Detecting breakpoints in artificially modified- and real-life time series using three state-of-the-art methods. Open Geosci. 8, 78–98 (2016). (PMID: 10.1515/geo-2016-0009)
R Core Team. R: a language and environment for statistical computing. (2019).
Goldscheider, N. et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 28, 1661–1677 (2020). (PMID: 10.1007/s10040-020-02139-5)
Band, S. et al. High-resolution mid-Holocene Indian Summer Monsoon recorded in a stalagmite from the Kotumsar Cave, Central India. Quat. Int. 479, 19–24 (2018). (PMID: 10.1016/j.quaint.2018.01.026)
Boch, R., Spötl, C. & Kramers, J. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quat. Sci. Rev. 28, 2527–2538 (2009). (PMID: 10.1016/j.quascirev.2009.05.015)
Daley, T. J. et al. The 8200 year BP cold event in stable isotope records from the North Atlantic region. Glob. Planet. Change 79, 288–302 (2011). (PMID: 10.1016/j.gloplacha.2011.03.006)
Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, L19707–L19707 (2009). (PMID: 10.1029/2009GL040050)
Grant Information:
694481 International ERC_ European Research Council
Substance Nomenclature:
0 (Oxygen Isotopes)
Entry Date(s):
Date Created: 20220622 Date Completed: 20220624 Latest Revision: 20221114
Update Code:
20240105
PubMed Central ID:
PMC9217811
DOI:
10.1038/s41598-022-14684-y
PMID:
35732793
Czasopismo naukowe
Abrupt events are a feature of many palaeoclimate records during the Holocene. The best example is the 8.2 ka event, which was triggered by a release of meltwater into the Labrador Sea and resulted in a weakening of poleward heat transport in the North Atlantic. We use an objective method to identify rapid climate events in globally distributed speleothem oxygen isotope records during the Holocene. We show that the 8.2 ka event can be identified in >70% of the speleothem records and is the most coherent signal of abrupt climate change during the last 12,000 years. The isotopic changes during the event are regionally homogenous: positive oxygen isotope anomalies are observed across Asia and negative anomalies are seen across Europe, the Mediterranean, South America and southern Africa. The magnitude of the isotopic excursions in Europe and Asia are statistically indistinguishable. There is no significant difference in the duration and timing of the 8.2 ka event between regions, or between the speleothem records and Greenland ice core records. Our study supports a rapid and global climate response to the 8.2 ka freshwater pulse into the North Atlantic, likely transmitted globally via atmospheric teleconnections.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies