Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Antibody-dependent cell-mediated cytotoxicity using T cells with NK-like phenotype in combination with avelumab, an anti-PD-L1 antibody.

Tytuł:
Antibody-dependent cell-mediated cytotoxicity using T cells with NK-like phenotype in combination with avelumab, an anti-PD-L1 antibody.
Autorzy:
Liu D; Department of Radiology, The First Hospital of Tsinghua University, Beijing, China.
Hu Y; Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Wei J; Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Zhang W; Department of Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Piao C; Department of Oncology, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.
Lu Y; Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA.
Wang Y; Department of Oncology, Beijing Biohealthcare Biotechnology Co., Ltd, Bejing, China.
Liu J; Department of Oncology, Beijing Biohealthcare Biotechnology Co., Ltd, Bejing, China.
Lu X; Department of Oncology, Beijing Biohealthcare Biotechnology Co., Ltd, Bejing, China.
Źródło:
Immunology [Immunology] 2022 Oct; Vol. 167 (2), pp. 212-220. Date of Electronic Publication: 2022 Aug 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Oxford : Blackwell Scientific Publications
MeSH Terms:
Antibodies, Monoclonal*/genetics
Antibodies, Monoclonal*/pharmacology
Antibodies, Monoclonal*/therapeutic use
T-Lymphocytes*/metabolism
Animals ; Antibodies, Monoclonal, Humanized ; B7-H1 Antigen ; Cell Line, Tumor ; Granzymes/genetics ; Humans ; Killer Cells, Natural ; Mice ; Perforin/genetics ; Phenotype
References:
Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.
Zhang Y, Schmidt-Wolf IGH. Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J Cell Physiol. 2020;235:9291-303.
Wang M, Yin B, Wang HY, Wang RF. Current advances in T-cell-based cancer immunotherapy. Immunotherapy. 2014;6:1265-78.
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer. 2020;2:zcaa002.
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450-61.
Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56-61.
Kyi C, Postow MA. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy. 2016;8:821-37.
Li B, Chan HL, Chen P. Immune checkpoint inhibitors: basics and challenges. Curr Med Chem. 2019;26:3009-25.
Boyerinas B, Jochems C, Fantini M, Heery CR, Gulley JL, Tsang KY, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res. 2015;3:1148-57.
Hamilton G, Rath B. Avelumab: combining immune checkpoint inhibition and antibody-dependent cytotoxicity. Expert Opin Biol Ther. 2017;17:515-23.
Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol. 2012;22:3-13.
Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, Davidson HC, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res. 2013;19:1858-72.
Veeramani S, Wang SY, Dahle C, Blackwell S, Jacobus L, Knutson T, et al. Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood. 2011;118:3347-9.
Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12:239-52.
Ward E, Mittereder N, Kuta E, Sims GP, Bowen MA, Dall'Acqua W, et al. A glycoengineered anti-CD19 antibody with potent antibody-dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo. Br J Haematol. 2011;155:426-37.
Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38:473-88.
Sermer D, Brentjens R. CAR T-cell therapy: full speed ahead. Hematol Oncol. 2019;37:95-100.
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15:2548-60.
Bupha-Intr O, Haeusler G, Chee L, Thursky K, Slavin M, Teh B. CAR-T cell therapy and infection: a review. Expert Rev Anti Infect Ther. 2021;19:749-58.
Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8:1219-26.
Fujii R, Schlom J, Hodge JW. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. J Neurosurg. 2018;128:1419-27.
Jochems C, Hodge JW, Fantini M, Tsang KY, Vandeveer AJ, Gulley JL, et al. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. Int J Cancer. 2017;141:583-93.
Wendel P, Reindl LM, Bexte T, Künnemeyer L, Särchen V, Albinger N, et al. Arming immune cells for battle: a brief journey through the advancements of T and NK cell immunotherapy. Cancers (Basel). 2021;13:1481.
Cappuzzello E, Tosi A, Zanovello P, Sommaggio R, Rosato A. Retargeting cytokine-induced killer cell activity by CD16 engagement with clinical-grade antibodies. Onco Targets Ther. 2016;5:e1199311.
Hu Y, Liu D, Cui P, Zhang W, Chen H, Piao C, et al. IL-15-induced lymphocytes as adjuvant cellular immunotherapy for gastric cancer. Invest New Drugs. 2021;39:1538-48.
Sommaggio R, Cappuzzello E, Dalla Pieta A, Tosi A, Palmerini P, Carpanese D, et al. Adoptive cell therapy of triple negative breast cancer with redirected cytokine-induced killer cells. Onco Targets Ther. 2020;9:1777046.
Tosi A, Dalla Santa S, Cappuzzello E, Marotta C, Walerich D, Del Sal G, et al. Identification of a HLA-A*0201-restricted immunogenic epitope from the universal tumor antigen DEPDC1. Onco Targets Ther. 2017;6:e1313371.
Pegoraro S, Ros G, Piazza S, Sommaggio R, Ciani Y, Rosato A, et al. HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness. Oncotarget. 2013;4:1293-308.
June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64-73.
Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10:317-27.
Chen CL, Pan QZ, Weng DS, Xie CM, Zhao JJ, Chen MS, et al. Safety and activity of PD-1 blockade-activated DC-CIK cells in patients with advanced solid tumors. Onco Targets Ther. 2018;7:e1417721.
Song MJ, Pan QZ, Ding Y, Zeng J, Dong P, Zhao JJ, et al. The efficacy and safety of the combination of axitinib and pembrolizumab-activated autologous DC-CIK cell immunotherapy for patients with advanced renal cell carcinoma: a phase 2 study. Clin Transl Immunol. 2021;10:e1257.
Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827-45.
Caligiuri MA. Human natural killer cells. Blood. 2008;112:461-9.
Bottino C, Biassoni R, Millo R, Moretta L, Moretta A. The human natural cytotoxicity receptors (NCR) that induce HLA class I-independent NK cell triggering. Hum Immunol. 2000;61:1-6.
Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med. 1997;186:1129-36.
Bonanno G, Iudicone P, Mariotti A, Procoli A, Pandolfi A, Fioravanti D, et al. Thymoglobulin, interferon-gamma and interleukin-2 efficiently expand cytokine-induced killer (CIK) cells in clinical-grade cultures. J Transl Med. 2010;8:129.
Dalla Pieta A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, et al. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer. 2021;9:e002475.
Contributed Indexing:
Keywords: CD16; adoptive cell-based immunotherapy; checkpoint inhibitor; orthotopic xenograft
Substance Nomenclature:
0 (Antibodies, Monoclonal)
0 (Antibodies, Monoclonal, Humanized)
0 (B7-H1 Antigen)
126465-35-8 (Perforin)
EC 3.4.21.- (Granzymes)
KXG2PJ551I (avelumab)
Entry Date(s):
Date Created: 20220625 Date Completed: 20220929 Latest Revision: 20221031
Update Code:
20240105
DOI:
10.1111/imm.13530
PMID:
35751879
Czasopismo naukowe
Though the PD-L1 checkpoint inhibitor avelumab has shown efficacy in the treatment of some types of cancer, improved treatment strategies are desperately needed. We evaluated whether combined treatment with avelumab and adoptively transferred T-NK cells can provide enhanced anti-cancer effects for treating PD-L1-expressing tumours. Our results demonstrate that avelumab specifically targets tumour cells with high PD-L1 expression, and that cytolytic effects are mediated by T-NK effector cells cultured from patient peripheral blood monocytic cell populations. The effects were dependent on CD16 and the perforin/granzyme pathway, supporting a role for the T-NK subpopulation. In vivo assays verified the efficacy of T-NK cells in combination with avelumab in reducing tumour growth. Furthermore, T-NK + avelumab prolonged survival in a mouse orthotopic xenograft model. Collectively, our findings provide a basis for the combined use of adoptively transferred T-NK cells with avelumab as a novel strategy for cancer treatment.
(© 2022 John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies