Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Aberrantly methylated-differentially expressed genes and related pathways in cholangiocarcinoma.

Tytuł:
Aberrantly methylated-differentially expressed genes and related pathways in cholangiocarcinoma.
Autorzy:
Lin G; Gastroenterology Department, the First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, China.
Xinhe Z; Gastroenterology Department, the First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, China.
Haoyu T; The 3rd Clinical Department of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, China.
Yiling L; Gastroenterology Department, the First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, China.
Źródło:
Medicine [Medicine (Baltimore)] 2022 Jun 24; Vol. 101 (25), pp. e29379. Date of Electronic Publication: 2022 Jun 24.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Hagerstown, Md : Lippincott Williams & Wilkins
MeSH Terms:
Cholangiocarcinoma*/genetics
Gene Regulatory Networks*
Computational Biology ; DNA Methylation/genetics ; Databases, Genetic ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Humans ; Protein Interaction Maps/genetics ; von Willebrand Factor
References:
Khan AS, Dageforde LA. Cholangiocarcinoma. Surg Clin North Am 2019;99:315–35.
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018;15:95–111.
Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: epidemiology and risk factors. Liver Int 2019;39: (Suppl 1): 19–31.
Macias RIR, Banales JM, Sangro B, et al. The search for novel diagnostic and prognostic biomarkers in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018;1864(4 Pt B):1468–77.
Bogdanović O, Lister R. DNA methylation and the preservation of cell identity. Curr Opin Genet Dev 2017;46:09–14.
Okamoto Y, Sawaki A, Ito S, et al. Aberrant DNA methylation associated with aggressiveness of gastrointestinal stromal tumour. Gut 2012;61:392–401.
Liu J, Li H, Sun L, Wang Z, Xing C, Yuan Y. Aberrantly methylated-differentially expressed genes and pathways in colorectal cancer. Cancer Cell Int 2017;17:75.
Li H, Liu JW, Liu S, Yuan Y, Sun LP. Bioinformatics-based identification of methylated-differentially expressed genes and related pathways in gastric cancer. Dig Dis Sci 2017;62:3029–39.
Sang L, Wang XM, Xu DY, Zhao WJ. Bioinformatics analysis of aberrantly methylated-differentially expressed genes and pathways in hepatocellular carcinoma. World J Gastroenterol 2018;24:2605–16.
Cai C, Wang W, Tu Z. Aberrantly DNA methylated-differentially expressed genes and pathways in hepatocellular carcinoma. J Cancer 2019;10:355–66.
Yi L, Luo P, Zhang J. Identification of aberrantly methylated differentially expressed genes in breast cancer by integrated bioinformatics analysis. J Cell Biochem 2019;120:16229–43.
Wang TX, Tan WL, Huang JC, et al. Identification of aberrantly methylated differentially expressed genes targeted by differentially expressed miRNA in osteosarcoma. Ann Transl Med 2020;8:373.
Han B, Yang X, Zhang P, et al. DNA methylation biomarkers for nasopharyngeal carcinoma. PLoS One 2020;15:e0230524.
Gong G, Lin T, Yuan Y. Integrated analysis of gene expression and DNA methylation profiles in ovarian cancer. J Ovarian Res 2020;13:30.
Nakaoka T, Saito Y, Saito H. Aberrant DNA methylation as a biomarker and a therapeutic target of cholangiocarcinoma. Int J Mol Sci 2017;18:1111.
Zhang C, Zhang B, Meng D, Ge C. Comprehensive analysis of DNA methylation and gene expression profiles in cholangiocarcinoma. Cancer Cell Int 2019 2019;19:352.
Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther 2018;3:05.
Sun L, Song L, Wan Q, et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res 2015;25:429–44.
Lehrer S, Green S, Dembitzer FR, Rheinstein PH, Rosenzweig KE. Increased RNA expression of von Willebrand factor gene is associated with infiltrating lobular breast cancer and normal PAM50 subtype. Cancer Genomics Proteomics 2019;16:147–53.
Wang Q, Shen Y, Ye B, et al. Gene expression differences between thyroid carcinoma, thyroid adenoma and normal thyroid tissue. Oncol Rep 2018;40:3359–69.
Drew JE, Farquharson AJ, Mayer CD, et al. Predictive gene signatures: molecular markers distinguishing colon adenomatous polyp and carcinoma. PLoS One 2014;9:e113071.
Piao J, Sun J, Yang Y, Jin T, Chen L, Lin Z. Target gene screening and evaluation of prognostic values in non-small cell lung cancers by bioinformatics analysis. Gene 2018;647:306–11.
Luo T, Chen X, Zeng S, et al. Bioinformatic identification of key genes and analysis of prognostic values in clear cell renal cell carcinoma. Oncol Lett 2018;16:1747–57.
Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch 2005;446:475–82.
Yang X, Tang Z, Zhang P, Zhang L. Research advances of JAK/STAT signaling pathway in lung cancer. Zhongguo Fei Ai Za Zhi 2019;22:45–51.
Pencik J, Pham HT, Schmoellerl J, et al. JAK-STAT signaling in cancer: from cytokines to non-coding genome. Cytokine 2016;87:26–36.
Smirnova OV, Ostroukhova TY, Bogorad RL. JAK-STAT pathway in carcinogenesis: is it relevant to cholangiocarcinoma progression? World J Gastroenterol 2007;13:6478–91.
Kim KJ, Kwon SH, Yun JH, Jeong HS, Kim HR, et al. STAT3 activation in endothelial cells is important for tumor metastasis via increased cell adhesion molecule expression. Oncogene 2017;36:5445–59.
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019;25:5732–72.
Fairfield K, Stampfer M. Vitamin and mineral supplements for cancer prevention: issues and evidence. Am J Clin Nutr 2007;85:289S–92S.
Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 2018;18:33–50.
Hart PC, Chiyoda T, Liu X, et al. SPHK1 is a novel target of metformin in ovarian cancer. Mol Cancer Res 2019;17:870–81.
Shen ZY, Feng XC, Fang Y, et al. POTEE drives colorectal cancer development via regulating SPHK1/p65 signaling. Cell Death Dis 2019;10:863.
Jiang W, Xu X, Deng S, et al. Methylation of kruppel-like factor 2 (KLF2) associates with its expression and non-small cell lung cancer progression. Am J Transl Res 2017;9:2024–37.
Moreno-Càceres J, Caballero-Díaz D, Nwosu ZC, et al. The level of caveolin-1 expression determines response to TGF-β as a tumour suppressor in hepatocellular carcinoma cells. Cell Death Dis 2017;8:e3098.
Kontos CK, Mavridis K, Talieri M, Scorilas A. Kallikrein-related peptidases (KLKs) in gastrointestinal cancer: mechanistic and clinical aspects. Thromb Haemost 2013;110:450–7.
Yang X, Zhang X, Wu R, et al. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis. Oncotarget 2017;8:8679–92.
Yan Y, Xu Z, Hu X, et al. SNCA is a functionally low-expressed gene in lung adenocarcinoma. Genes (Basel) 2018;9:16.
Li WH, Zhang H, Guo Q, et al. Detection of SNCA and FBN1 methylation in the stool as a biomarker for colorectal cancer. Dis Markers 2015;657570.
Substance Nomenclature:
0 (von Willebrand Factor)
Entry Date(s):
Date Created: 20220627 Date Completed: 20220628 Latest Revision: 20221103
Update Code:
20240105
PubMed Central ID:
PMC9276268
DOI:
10.1097/MD.0000000000029379
PMID:
35758372
Czasopismo naukowe
Abstract: This study aimed to explore aberrantly methylated-differentially expressed genes and related pathways in cholangiocarcinoma (CCA).The mRNA expression data (GSE26566) and methylation profiling data (GSE44965) were collected from the Gene Expression Omnibus (GEO) Datasets. Differentially expressed genes and differentially methylated genes were identified using GEO2R. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using clusterprofiler in R. MCODE clustering tool was used to screen modules of the protein-protein interaction network in Cytoscape. Related pathways of hub gene by using gene set enrichment analysis.Eighty-one hypermethylated, lowly expressed genes (Hyper-LGs) and 76 hypomethylated, highly expressed genes (Hypo-HGs) were identified in this study. Hyper-LGs were enriched in ion channel binding and transcription factor activity, which was associated with Mineral absorption and Cell adhesion molecules. Hypo-HGs were enriched in cysteine-type endopeptidase activity, which was associated with Sphingolipid signaling pathway and T cell receptor signaling pathway. Based on protein-protein interaction networks, MYC and VWF were identified as hub genes for Hyper-LGs, and no hub genes for Hypo-HGs.This study found methylated-differentially expressed genes and signaling pathways that are connected with the CCA by using a series of bioinformatics databases and tools. MYC and VWF act as hub genes of CCA, which can be used as biomarkers based on aberrant methylation for the accurate diagnosis and treatment of CCA.
Competing Interests: The authors have no conflicts of interest to disclose.
(Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies