Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Single-cell transcriptional profiling reveals cellular and molecular divergence in human maternal-fetal interface.

Tytuł:
Single-cell transcriptional profiling reveals cellular and molecular divergence in human maternal-fetal interface.
Autorzy:
Wang Q; BGI-Shenzhen, Shenzhen, 518083, China.
Li J; BGI-Shenzhen, Shenzhen, 518083, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Wang S; BGI-Shenzhen, Shenzhen, 518083, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Deng Q; BGI-Shenzhen, Shenzhen, 518083, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
An Y; BGI-Shenzhen, Shenzhen, 518083, China.
Xing Y
Dai X; BGI-Shenzhen, Shenzhen, 518083, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Li Z; BGI-Shenzhen, Shenzhen, 518083, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Ma Q; BGI-Shenzhen, Shenzhen, 518083, China.
Wang K; BGI-Shenzhen, Shenzhen, 518083, China.; Shenzhen BGI Cell Technology Co., Ltd, Shenzhen, 518083, China.
Liu C; BGI-Shenzhen, Shenzhen, 518083, China.
Yuan Y; BGI-Shenzhen, Shenzhen, 518083, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Dong G; BGI-Shenzhen, Shenzhen, 518083, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Zhang T; BGI-Shenzhen, Shenzhen, 518083, China.
Yang H; BGI-Shenzhen, Shenzhen, 518083, China.; James D. Watson Institute of Genome Sciences, Hangzhou, China.
Du Y; BGI-Shenzhen, Shenzhen, 518083, China.
Hou Y; BGI-Shenzhen, Shenzhen, 518083, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Ke W; Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China. .
Shang Z; BGI-Shenzhen, Shenzhen, 518083, China. .; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .; BGI College, Northwest University, Xi'an, 710000, China. .
Źródło:
Scientific reports [Sci Rep] 2022 Jun 28; Vol. 12 (1), pp. 10892. Date of Electronic Publication: 2022 Jun 28.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Fetus*
Trophoblasts*/metabolism
Cell Differentiation/genetics ; Female ; Humans ; Placenta/metabolism ; Pregnancy ; Stem Cells
References:
Sood, R., Zehnder, J. L., Druzin, M. L. & Brown, P. O. Gene expression patterns in human placenta. Proc. Natl. Acad. Sci. USA 103, 5478–5483 (2006). (PMID: 16567644141463210.1073/pnas.0508035103)
Burton, G. J. & Jauniaux, E. Viewpoint What is the placenta. Am. J. Obstet. Gynecol. 213, S6.e1-S6.e4 (2015). (PMID: 10.1016/j.ajog.2015.07.050)
Ji, L. et al. Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol. Aspects Med. 34, 981–1023 (2013). (PMID: 2327682510.1016/j.mam.2012.12.008)
Bs, M. G. et al. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations. Am. J. Obstet. Gynecol. 217(200), e1-200.e17 (2017).
Phipps, E. A., Thadhani, R., Benzing, T. & Karumanchi, S. A. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat. Rev. Nephrol. 15, 275–289 (2019). (PMID: 30792480647295210.1038/s41581-019-0119-6)
Pique, R. et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife 8, e52004 (2019). (PMID: 10.7554/eLife.52004)
Patel, J., Sha, A., Wang, W., Fisk, N. M. & Khosrotehrani, K. Novel isolation strategy to deliver pure fetal-origin and maternal-origin mesenchymal stem cell (MSC) populations from human term placenta. Placenta 35, 969–971 (2014). (PMID: 2523922010.1016/j.placenta.2014.09.001)
Ventura Ferreira, M. S. et al. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta. Stem Cell Res. Ther. 9, 1–17 (2018). (PMID: 10.1186/s13287-017-0757-1)
Chang, P. M. Human trophoblast stem cells: Real or not real. Placenta 60(Suppl 1), S57–S60 (2017). (PMID: 28087122549825910.1016/j.placenta.2017.01.003)
Hemberger, M., Udayashankar, R., Tesar, P., Moore, H. & Burton, G. J. ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum. Mol. Genet. 19, 2456–2467 (2010). (PMID: 2035407710.1093/hmg/ddq128)
Genbacev, O. et al. Human trophoblast progenitors: Where do they reside?. Semin. Reprod. Med. 31, 56–61 (2013). (PMID: 23329637610166810.1055/s-0032-1331798)
Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50-63.e6 (2018). (PMID: 2924946310.1016/j.stem.2017.11.004)
Horii, M. et al. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc. Natl. Acad. Sci. USA 113, E3882–E3891 (2016). (PMID: 27325764494144810.1073/pnas.1604747113)
Telugu, B. P. et al. Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from fi rst trimester human placentas. Placenta 34, 536–543 (2013). (PMID: 23631809379985010.1016/j.placenta.2013.03.016)
Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017). (PMID: 29144463602229210.1038/nature24489)
Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science (80-) 356, eaah4573 (2017). (PMID: 10.1126/science.aah4573)
Shang, Z. et al. Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation. Gigascience 7, 1–19 (2018). (PMID: 2918644710.1093/gigascience/giy117)
Suryawanshi, H. et al. A single-cell survey of the human first-trimester placenta and decidua. Sci. Adv. 4, 1–13 (2018). (PMID: 10.1126/sciadv.aau4788)
Liu, et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res. 28, 819–832 (2018). (PMID: 30042384608290710.1038/s41422-018-0066-y)
Ventotormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018). (PMID: 10.1038/s41586-018-0698-6)
Pavličev, M. et al. Single-cell transcriptomics of the human placenta: Inferring the cell communication network of the maternal-fetal interface. Genome Res. 27, 349–361 (2017). (PMID: 28174237534096310.1101/gr.207597.116)
Tsang, J. C. H. et al. Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc. Natl. Acad. Sci. USA 114, E7786–E7795 (2017). (PMID: 28830992560403810.1073/pnas.1710470114)
Valle-sistac, J. et al. Determination of parabens and benzophenone-type UV fi lters in human placenta. First description of the existence of benzyl paraben and benzophenone-4. Environ. Int. 88, 243–249 (2016). (PMID: 2677339510.1016/j.envint.2015.12.034)
Sternberg, J. Radiation and pregnancy. Can. Med. Assoc. J. 109, 51–57 (1973). (PMID: 45776001946757)
Huppertz, B. & Kingdom, J. C. P. Apoptosis in the trophoblast - Role of apoptosis in placental morphogenesis. J. Soc. Gynecol. Investig. 11, 353–362 (2004). (PMID: 1535024710.1016/j.jsgi.2004.06.002)
Luo, S. et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 1(729), 717–729 (2009). (PMID: 10.1095/biolreprod.108.075481)
Familari, M., Cronqvist, T., Masoumi, Z. & Hansson, S. R. Placenta-derived extracellular vesicles: Their cargo and possible functions. Reprod. Fertil. Dev. 29, 433–447 (2017). (PMID: 2641140210.1071/RD15143)
Qin, S. Q. et al. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta. Placenta 39, 134–146 (2016). (PMID: 2699268610.1016/j.placenta.2016.01.018)
Carver, J. et al. An in-vitro model for stromal invasion during implantation of the human blastocyst. Hum Reprod 18, 283–290 (2003). (PMID: 1257116310.1093/humrep/deg072)
Durairaj, R. R. P. et al. Erratum to: Deregulation of the endometrial stromal cell secretome precedes embryo implantation failure [Mol Hum Reprod (2017)]. Mol. Hum. Reprod. 23, 582. https://doi.org/10.1093/molehr/gax023 (2017). (PMID: 10.1093/molehr/gax023)
Sardesai, V. S., Shafiee, A., Fisk, N. M. & Pelekanos, R. A. Avoidance of maternal cell contamination and overgrowth in isolating fetal chorionic villi mesenchymal stem cells from human term placenta. Stem Cells Transl. Med. 6, 1070–1084 (2017). (PMID: 28205414544283810.1002/sctm.15-0327)
Embryogenesis, H. et al. Opioid and progesterone signaling is obligatory. 18 (2009).
Burton, G. J., Jauniaux, E. & Charnock-jones, D. S. Human early placental development: Potential roles of the endometrial glands. Placenta 21, 64–69 (2007). (PMID: 10.1016/j.placenta.2007.01.007)
Baines, K. J. & Renaud, S. J. Transcription factors that regulate trophoblast development and function. Mol. Biol. Placent. Dev. Dis. 145, 39–88 (2017). (PMID: 10.1016/bs.pmbts.2016.12.003)
Wu, Y. et al. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation. J. Mol. Cell. Cardiol. 44, 47–58 (2008). (PMID: 1766299710.1016/j.yjmcc.2007.06.008)
Li, N. et al. Mutations in the histone modifier PRDM6 are associated with isolated nonsyndromic patent ductus arteriosus. Am. J. Hum. Genet. 99, 1000 (2016). (PMID: 27716515506568210.1016/j.ajhg.2016.09.003)
Sircar, M., Thadhani, R. & Karumanchi, S. A. Pathogenesis of preeclampsia. Curr. Opin. Nephrol. Hypertens. 24, 131–138 (2015). (PMID: 2563614510.1097/MNH.0000000000000105)
Farah, O., Nguyen, C., Tekkatte, C. & Parast, M. M. Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction. Placenta 102, 4–9 (2020). (PMID: 33218578768050510.1016/j.placenta.2020.02.007)
Farine, T., Parsons, M., Lye, S. & Shynlova, O. Isolation of primary human decidual cells from the fetal membranes of term placentae. J. Vis. Exp. 2018, 1–8 (2018).
Jacobs, S. O. et al. Characterizing the immune cell population in the human fetal membrane. Am. J. Reprod. Immunol. 85, 1–2 (2021). (PMID: 10.1111/aji.13368)
Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647-1660.e19 (2019). (PMID: 3183503710.1016/j.cell.2019.11.025)
Molbay, M., Kipmen-Korgun, D., Korkmaz, G., Ozekinci, M. & Korgun, E. T. Human trophoblast progenitor cells express and release angiogenic factors. Int. J. Mol. Cell. Med. 7, 203–211 (2018). (PMID: 31516879)
Papait, A. et al. Mesenchymal stromal cells from fetal and maternal placenta possess key similarities and differences: Potential implications for their applications in regenerative medicine. Cells 9, 127 (2020). (PMID: 701720510.3390/cells9010127)
Möller, E. et al. FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1. Clin. Cancer Res. 17, 2646–2656 (2011). (PMID: 2153654510.1158/1078-0432.CCR-11-0145)
Burton, G. J., Jauniaux, E. & Murray, A. J. Oxygen and placental development; parallels and differences with tumour biology. Placenta 56, 14–18 (2017). (PMID: 2818791710.1016/j.placenta.2017.01.130)
Choi, Y. et al. Integrative analysis of oncogenic fusion genes and their functional impact in colorectal cancer. Br. J. Cancer 119, 230–240 (2018). (PMID: 29955133604811110.1038/s41416-018-0153-3)
Liao, J. et al. SSRP1 silencing inhibits the proliferation and malignancy of human glioma cells via the MAPK signaling pathway. Oncol. Rep. 38, 2667–2676 (2017). (PMID: 29048646578001910.3892/or.2017.5982)
Musa, J., Aynaud, M. M., Mirabeau, O., Delattre, O. & Grünewald, T. G. MYBL2 (B-Myb): A central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis. 8, e2895 (2017). (PMID: 28640249552090310.1038/cddis.2017.244)
Chakravarthi, B. V. S. K. et al. MicroRNA-101 regulated transcriptional modulator SUB1 plays a role in prostate cancer. Oncogene 35, 6330–6340 (2016). (PMID: 27270442514077710.1038/onc.2016.164)
Menkhorst, E., Winship, A., Van Sinderen, M. & Dimitriadis, E. Human extravillous trophoblast invasion: Intrinsic and extrinsic regulation. Reprod. Fertil. Dev. 28, 406–415 (2016). (PMID: 2516348510.1071/RD14208)
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 1–12 (2017). (PMID: 10.1038/ncomms14049)
Wang, Q. et al. Single-cell transcriptome profiling reveals molecular heterogeneity in human umbilical cord tissue and culture-expanded mesenchymal stem cells. FEBS J. 288, 3069–3082 (2021). (PMID: 10.1111/febs.15834)
Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–501 (2011). (PMID: 21478889308346310.1038/ng.806)
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018). (PMID: 2922747010.1038/nbt.4042)
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888-1902.e21 (2019). (PMID: 31178118668739810.1016/j.cell.2019.05.031)
Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017). (PMID: 28825705576454710.1038/nmeth.4402)
Wolf, F. A. et al. PAGA: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 1–9 (2019). (PMID: 10.1186/s13059-019-1663-x)
Chikina, M., Robinson, J. D. & Clark, N. L. Hundreds of genes experienced convergent shifts in selective pressure in marine mammals. Mol. Biol. Evol. 33, 2182–2192 (2016). (PMID: 27329977585403110.1093/molbev/msw112)
Szklarczyk, D. et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017). (PMID: 2792401410.1093/nar/gkw937)
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. Cell PhoneDB: Inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020). (PMID: 3210320410.1038/s41596-020-0292-x)
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014). (PMID: 2493013910.1093/bioinformatics/btu393)
Entry Date(s):
Date Created: 20220628 Date Completed: 20220630 Latest Revision: 20221114
Update Code:
20240105
PubMed Central ID:
PMC9240006
DOI:
10.1038/s41598-022-14516-z
PMID:
35764880
Czasopismo naukowe
Placenta plays essential role in successful pregnancy, as the most important organ connecting and interplaying between mother and fetus. However, the cellular characteristics and molecular interaction of cell populations within the fetomaternal interface is still poorly understood. Here, we surveyed the single-cell transcriptomic landscape of human full-term placenta and revealed the heterogeneity of cytotrophoblast cell (CTB) and stromal cell (STR) with the fetal/maternal origin consecutively localized from fetal section (FS), middle section (Mid_S) to maternal section (Mat_S) of maternal-fetal interface. Then, we highlighted a subpopulation of CTB, named trophoblast progenitor-like cells (TPLCs) existed in the full-term placenta and mainly distributed in Mid_S, with high expression of a pool of putative cell surface markers. Further, we revealed the putative key transcription factor PRDM6 that might promote the differentiation of endovascular extravillous trophoblast cells (enEVT) by inhibiting cell proliferation, and down-regulation of PRDM6 might lead to an abnormal enEVT differentiation process in PE. Together, our study offers important resources for better understanding of human placenta and stem cell-based therapy, and provides new insights on the study of tissue heterogeneity, the clinical prevention and control of PE as well as the maternal-fetal interface.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies