Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Tobacco smoke exposure and mitochondrial DNA copy number on neurobehavioural performance: A community study.

Tytuł:
Tobacco smoke exposure and mitochondrial DNA copy number on neurobehavioural performance: A community study.
Autorzy:
Wang H; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
Fu M; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
Ma Y; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
Liu C; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
Wu M; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
Nie J; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Dec; Vol. 29 (56), pp. 84180-84190. Date of Electronic Publication: 2022 Jul 01.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
DNA, Mitochondrial*/genetics
Tobacco Smoke Pollution*
DNA Copy Number Variations ; Cotinine ; Mitochondria/genetics ; Smoke
References:
Andrews SJ, Goate AM (2020) Mitochondrial DNA copy number is associated with cognitive impairment. Alzheimer’s Dement 16:1–2. https://doi.org/10.1002/alz.047543. (PMID: 10.1002/alz.047543)
Anger WK (2003) Neurobehavioural tests and systems to assess neurotoxic exposures in the workplace and community. Occup Environ Med 60:531–538. https://doi.org/10.1136/oem.60.7.531. (PMID: 10.1136/oem.60.7.531)
Ashar FN, Zhang Y, Longchamps RJ et al (2017) Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol 2:1247–1255. https://doi.org/10.1001/jamacardio.2017.3683. (PMID: 10.1001/jamacardio.2017.3683)
Benowitz NL (1999) Biomarkers of environmental tobacco smoke exposure. Environ Health Perspect 107:349–355. https://doi.org/10.1289/ehp.99107s2349. (PMID: 10.1289/ehp.99107s2349)
Benowitz NL, Jacob P, Ahijevych K et al (2002) Biochemical verification of tobacco use and cessation. Nicotine Tob Res 4:149–159. https://doi.org/10.1080/14622200210123581. (PMID: 10.1080/14622200210123581)
Benowitz NI, Dains KM, Dempsey D et al (2009) Urine nicotine metabolite concentrations in relation to plasma cotinine during low-level nicotine exposure. Nicotine Tob Res 11:954–960. https://doi.org/10.1093/ntr/ntp092. (PMID: 10.1093/ntr/ntp092)
Carugno M, Pesatori AC, Dioni L et al (2012) Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ Health Perspect 5:210–215. (PMID: 10.1289/ehp.1103979)
Cervilla JA, Prince M, Mann A (2000) Smoking, drinking, and incident cognitive impairment : a cohort community based study included in the Gospel Oak project. J Neurol Neurosurg Psychiatry 68:622–626. https://doi.org/10.1136/jnnp.68.5.622. (PMID: 10.1136/jnnp.68.5.622)
Cuijpers P, Smit F, Have M, De GR (2007) Smoking is associated with first-ever incidence of mental disorders : a prospective population-based study. Addiction 102:1303–1309. https://doi.org/10.1111/j.1360-0443.2007.01885.x. (PMID: 10.1111/j.1360-0443.2007.01885.x)
Doll R, Peto R, Boreham J, Sutherland I (2000) Smoking and dementia in male British doctors: prospective study. Br Med J 320:1097–1102. https://doi.org/10.1136/bmj.320.7242.1097. (PMID: 10.1136/bmj.320.7242.1097)
Edelstein SL, Sc M, Kritz-silverstein D et al (1998) Prospective association of smoking and alcohol use with cognitive function in an elderly cohort. J Women’s Health 7:1271–1281. https://doi.org/10.1089/jwh.1998.7.1271. (PMID: 10.1089/jwh.1998.7.1271)
Ford AB, Mefrouche Z, Friedland RP, Debanne SM (1996) Smoking and cognitive impairment: a population-based study. J Am Geriatr Soc 44:905–909. https://doi.org/10.1111/j.1532-5415.1996.tb01858.x. (PMID: 10.1111/j.1532-5415.1996.tb01858.x)
Giordano L, Deceglie S, D’Adamo P et al (2015) Cigarette toxicity triggers Leber’s hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways. Cell Death Dis 6:1–10. https://doi.org/10.1038/cddis.2015.364. (PMID: 10.1038/cddis.2015.364)
Graves AB, Duijn CMVAN, Fratiglioni L et al (1991) Alcohol and tobacco consumption as risk factors for Alzheimer’s disease : a collaborative re-analysis of case-control studies. Int J Epidemiol 20:S48-57. https://doi.org/10.1093/ije/20.supplement_2.s48. (PMID: 10.1093/ije/20.supplement_2.s48)
Haufroid V, Lison D (1998) Urinary cotinine as a tobacco-smoke exposure index. A minireview. Int Arch Occup Environ Health 71:162–168. https://doi.org/10.1007/s004200050266. (PMID: 10.1007/s004200050266)
Herzig KE, Callaway E, Halliday R et al (1998) Effects of cotinine an information processing in nonsmokers. Psychopharmacology 135:127–132. https://doi.org/10.1007/s002130050493. (PMID: 10.1007/s002130050493)
Jacob P, Yu L, Duan M et al (2011) Determination of the nicotine metabolites cotinine and trans-3’-hydroxycotinine in biologic fluids of smokers and non-smokers using liquid chromatography-tandem mass spectrometry: biomarkers for tobacco smoke exposure and for phenotyping cytochrome P450 2. J Chromatogr B Anal Technol Biomed Life Sci 879:267–276. https://doi.org/10.1016/j.jchromb.2010.12.012. (PMID: 10.1016/j.jchromb.2010.12.012)
Jarvis MJ, Tunstall-Pedoe H, Feyerabend C et al (1987) Comparison of tests used to distinguish smokers from nonsmokers. Am J Public Health 77:1435–1438. https://doi.org/10.2105/AJPH.77.11.1435. (PMID: 10.2105/AJPH.77.11.1435)
Kalmijn S, Van BMPJ, Verschuren MWM et al (2002) Cigarette smoking and alcohol consumption in relation to cognitive performance in middle age. Am J Epidemiol 156:936–944. https://doi.org/10.1093/aje/kwf135. (PMID: 10.1093/aje/kwf135)
Klietz M-L, Kaiser HW, Machens H-G, Aitzetmüller MM (2019) How is exposure to tobacco outlets within activity spaces associated with daily tobacco use among youth? A Mediation Analysis. 22:958–966. https://doi.org/10.1093/ntr/ntz088.
Koch M, Fitzpatrick AL, Rapp SR et al (2019) Alcohol consumption and risk of dementia and cognitive decline among older adults with or without mild cognitive impairment. JAMA Netw Open 2:e1910319. https://doi.org/10.1001/jamanetworkopen.2019.10319. (PMID: 10.1001/jamanetworkopen.2019.10319)
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292. (PMID: 10.1038/nature05292)
Lindqvist D, Wolkowitz OM, Picard M et al (2018) Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology 43:1557–1564. https://doi.org/10.1038/s41386-017-0001-9. (PMID: 10.1038/s41386-017-0001-9)
Liu Y, Li H, Wang J et al (2020) Association of cigarette smoking with cerebrospinal fluid biomarkers of neurodegeneration, neuroinflammation, and oxidation. JAMA Netw Open 3:1–12. https://doi.org/10.1001/jamanetworkopen.2020.18777. (PMID: 10.1001/jamanetworkopen.2020.18777)
Mattson MP, Liu D (2002) Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. NeuroMolecular Med 2:215–231. https://doi.org/10.1385/NMM:2:2:215. (PMID: 10.1385/NMM:2:2:215)
Qiu C, Peng B, Cheng S et al (2013) The effect of occupational exposure to benzo[a]pyrene on neurobehavioral function in coke oven workers. Am J Ind Med 56:347–355. https://doi.org/10.1002/ajim.22119. (PMID: 10.1002/ajim.22119)
Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53. https://doi.org/10.1016/j.molmed.2007.12.002. (PMID: 10.1016/j.molmed.2007.12.002)
Richards M, Jarvis MJ, Thompson N, Wadsworth MEJ (2003) Cigarette smoking and cognitive decline in midlife : evidence from a prospective birth cohort study. Am J Public Health 93:994–998. https://doi.org/10.2105/ajph.93.6.994. (PMID: 10.2105/ajph.93.6.994)
Rosso M, Chitnis T (2020) Association between cigarette smoking and multiple sclerosis: a review. JAMA Neurol 77:245–253. https://doi.org/10.1001/jamaneurol.2019.4271. (PMID: 10.1001/jamaneurol.2019.4271)
Sabbagh MN (2002) The nicotinic acetylcholine receptor smoking and alzheimer s disease revisited. J Alzheimer’s Dis 4:317–325. https://doi.org/10.2741/e367. (PMID: 10.2741/e367)
Saenen ND, Provost EB, Cuypers A et al (2019) Child’s buccal cell mitochondrial DNA content modifies the association between heart rate variability and recent air pollution exposure at school. Environ Int 123:39–49. https://doi.org/10.1016/j.envint.2018.11.028. (PMID: 10.1016/j.envint.2018.11.028)
Suzuki S, Cohen SM, Arnold LL et al (2020) Cotinine, a major nicotine metabolite, induces cell proliferation on urothelium in vitro and in vivo. Toxicology 429:152325. https://doi.org/10.1016/j.tox.2019.152325. (PMID: 10.1016/j.tox.2019.152325)
Swan GE, Lessov-Schlaggar CN (2007) The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev 17:259–273. https://doi.org/10.1007/s11065-007-9035-9. (PMID: 10.1007/s11065-007-9035-9)
Thomas CE, Wang R, Adams-Haduch J et al (2020) Urinary cotinine is as good a biomarker as serum cotinine for cigarette smoking exposure and lung cancer risk prediction. Cancer Epidemiol Biomarkers Prev 29:127–132. https://doi.org/10.1158/1055-9965.EPI-19-0653. (PMID: 10.1158/1055-9965.EPI-19-0653)
Ungvari Z, Tarantini S, Donato AJ et al (2018) Mechanisms of vascular aging. Circ Res 123:849–867. https://doi.org/10.1161/CIRCRESAHA.118.311378. (PMID: 10.1161/CIRCRESAHA.118.311378)
Van Duijn CM, Clayton DG, Chandra V et al (1994) Interaction between genetic and environmental risk factors for Alzheimer’s disease: a reanalysis of case-control studies. Genet Epidemiol 11:539–551. https://doi.org/10.1002/gepi.1370110609. (PMID: 10.1002/gepi.1370110609)
Van Gool CH, Kempen GIJM, Bosma H et al (2007) Associations between lifestyle and depressed mood: longitudinal results from the Maastricht aging study. Am J Public Health 97:887–894. https://doi.org/10.2105/AJPH.2004.053199. (PMID: 10.2105/AJPH.2004.053199)
Vine MF, Hulka BS, Margolin BH et al (1993) Cotinine concentrations in semen, urine, and blood of smokers and nonsmokers. Am J Public Health 83:1335–1338. https://doi.org/10.2105/AJPH.83.9.1335. (PMID: 10.2105/AJPH.83.9.1335)
Vyas CM, Ogata S, Reynolds CF et al (2020) Lifestyle and behavioral factors and mitochondrial DNA copy number in a diverse cohort of mid-life and older adults. PLoS One 15:1–19. https://doi.org/10.1371/journal.pone.0237235. (PMID: 10.1371/journal.pone.0237235)
Wang H, Chen H, Han S et al (2021) Decreased mitochondrial DNA copy number in nerve cells and the hippocampus during nicotine exposure is mediated by autophagy. Ecotoxicol Environ Saf 226:112831. https://doi.org/10.1016/j.ecoenv.2021.112831. (PMID: 10.1016/j.ecoenv.2021.112831)
Wu NN, Zhang Y, Ren J (2019a) Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging. Oxid Med Cell Longev 2019:10–12. https://doi.org/10.1155/2019/9825061. (PMID: 10.1155/2019/9825061)
Wu S, Li X, Meng S et al (2019b) Fruit and vegetable consumption, cigarette smoke, and leukocyte mitochondrial DNA copy number. Am J Clin Nutr 109:424–432. https://doi.org/10.1093/ajcn/nqy286. (PMID: 10.1093/ajcn/nqy286)
Yu M (2011) Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci 89:65–71. https://doi.org/10.1016/j.lfs.2011.05.010. (PMID: 10.1016/j.lfs.2011.05.010)
Yuan Y, Ju YS, Kim Y et al (2020) Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet 52:342–352. https://doi.org/10.1038/s41588-019-0557-x. (PMID: 10.1038/s41588-019-0557-x)
Zhang WZ, Rice MC, Hoffman KL et al (2020) Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight 5:e133984. https://doi.org/10.1172/jci.insight.133984. (PMID: 10.1172/jci.insight.133984)
Grant Information:
81673143 National Natural Science Foundation of China; 81072279 National Natural Science Foundation of China; 30800899 National Natural Science Foundation of China; 2010021034-3 Natural Science Foundation of Shanxi Province; 2015011128 Natural Science Foundation of Shanxi Province; 2016-057 Shanxi Scholarship Council of China
Contributed Indexing:
Keywords: Mitochondrial DNA copy number; Neurological performance; Tobacco smoke
Substance Nomenclature:
0 (DNA, Mitochondrial)
0 (Tobacco Smoke Pollution)
K5161X06LL (Cotinine)
0 (Smoke)
Entry Date(s):
Date Created: 20220701 Date Completed: 20221111 Latest Revision: 20221111
Update Code:
20240105
DOI:
10.1007/s11356-022-20921-8
PMID:
35776305
Czasopismo naukowe
The influence of tobacco smoke has been a controversial and very questionable subject within the field of neurological behaviours. To examine the dose-response relationships between tobacco smoke and neurological performance, we investigated whether mitochondrial DNA copy number (mtDNAcn) mediates these relationships. We used restricted cubic spline models to estimate the dose-response relationships. A mediation model was also used to detect the mediating effect. Increased cotinine was negatively associated with auditory memory scores and a 0.51 decrease in mtDNAcn. MtDNAcn acts as a mediator between cotinine and auditory memory. Tobacco smoke levels were inversely associated with mtDNAcn and neurobehavioural changes, and there was a mediation effect between cotinine levels and auditory memory by mtDNAcn.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies