Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A systematic approach to reduce intraocular pressure for the treatment of glaucoma.

Tytuł:
A systematic approach to reduce intraocular pressure for the treatment of glaucoma.
Autorzy:
Huang YL; School of Medicine, National Cheng Kung University, Tainan, Taiwan.
Hsu YL; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
Yu YC; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
Huang HY; School of Medicine, National Cheng Kung University, Tainan, Taiwan.
Tsai RH; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
Cheng YT; School of Medicine, National Cheng Kung University, Tainan, Taiwan.
Chou YL; Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.
Sun SY; School of Medicine, National Cheng Kung University, Tainan, Taiwan.
Wang LA; School of Medicine, National Cheng Kung University, Tainan, Taiwan.
Lin JY; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
Chen CC; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Hung JH; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.; Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Ng IS; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
Źródło:
Biotechnology progress [Biotechnol Prog] 2022 Nov; Vol. 38 (6), pp. e3285. Date of Electronic Publication: 2022 Jul 14.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2010-> : Hoboken, NJ : Wiley-Blackwell
Original Publication: [New York, N.Y. : American Institute of Chemical Engineers, c1985-
MeSH Terms:
Intraocular Pressure*
Glaucoma*/drug therapy
Animals ; Swine ; Humans ; Nitric Oxide/therapeutic use ; Nitric Oxide Synthase/metabolism ; Nitric Oxide Synthase/therapeutic use
References:
Weinreb RN, Leung CKS, Crowston JG, et al. Primary open-angle glaucoma. Nat Rev Dis Primers. 2016;2:1-19.
Varma R, Lee PP, Goldberg I, Kotak S. An assessment of the health and economic burdens of glaucoma. Am J Ophthalmol. 2011;152:515-522.
Rein DB, Zhang P, Wirth KE, et al. The economic burden of major adult visual disorders in the United States. Arch Ophthalmol. 2006;124:1754-1760.
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma a review. JAMA. 2014;311:1901-1911.
Ha A, Kim YK, Kim JS, Jeoung JW, Park KH. Changes in intraocular pressure during reading or writing on smartphones in patients with normal-tension glaucoma. Br J Ophthalmol. 2020;104:623-628.
Phu J, Agar A, Wang H, Masselos K, Kalloniatis M. Management of open-angle glaucoma by primary eye-care practitioners: toward a personalised medicine approach. Clin Exp Optom. 2021;104:367-384.
Newman-Casey PA, Robin AL, Blachley T, et al. The most common barriers to glaucoma medication adherence a cross-sectional survey. Ophthalmol. 2015;122:1308-1316.
Muenster S, Lieb WS, Fabry G, et al. The ability of nitric oxide to lower intraocular pressure is dependent on guanylyl cyclase. Investig Ophthalmol Vis Sci. 2017;58:4826-4835.
Cohen LP, Pasquale LR. Clinical characteristics and current treatment of glaucoma. Cold Spring Harb Perspect. 2014;4:a017236.
Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829-837.
Zeaiter Z, Mapelli F, Crotti E, Borin S. Methods for the genetic manipulation of marine bacteria. Electron J Biotechnol. 2018;33:17-28.
DeBenedictis EP, Liu J, Keten S. Adhesion mechanisms of curli subunit CsgA to abiotic surfaces. Sci Adv. 2016;2:e1600998.
Culler HF, Couto SC, Higa JS, et al. Role of SdiA on biofilm formation by atypical enteropathogenic Escherichia coli. Genes. 2018;9:253.
Barnhart MM, Chapman MR. Curli biogenesis and function. Annu Rev Microbiol. 2006;60:131-147.
Hsu KP, Tan SI, Chiu CY, Chang YK, Ng IS. ARduino-pH tracker and screening platform for characterization of recombinant carbonic anhydrase in Escherichia coli. Biotech Prog. 2019;35:e2834.
Lu DW, Chen YH, Chang CJ, Chiang CH, Yao HY. Nitric oxide levels in the aqueous humor vary in different ocular hypertension experimental models. Kaohsiung J Med Sci. 2014;30:593-598.
Klunk WE, Pettegrew JW, Abraham DJ. Quantitative-evaluation of Congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem. 1989;37:1273-1281.
Ting WW, Tan SI, Ng IS. Development of chromosome-based T7 RNA polymerase and orthogonal T7 promoter circuit in Escherichia coli W3110 as a cell factory. Bioresour Bioprocess. 2020;7:1-13.
Heichel J, Wilhelm F, Kunert KS, Hammer T. Topographic findings of the porcine cornea. Med Hypothesis Discov Innov Ophthalmol. 2016;5:125-131.
Alvarez-Lorenzo C, Hiratani H, Gómez-Amoza JL, Martínez-Pacheco R, Souto C, Concheiro A. Soft contact lenses capable of sustained delivery of timolol. J Pharm Sci. 2002;91:2182-2192.
Zhang J, Zhang Y, Li Y, et al. Correlation of IOP with corneal acoustic impedance in porcine eye model. Biomed Res Int. 2017;2017:1-6.
Rodrigues RO, Pinho D, Bento D, Lima R, Ribeiro J. Wall expansion assessment of an intracranial aneurysm model by a 3D digital image correlation system. Measurement. 2016;88:262-270.
Chen FX, Chen X, Xie X, Feng X, Yang LX. Full-field 3D measurement using multi-camera digital image correlation system. Opt Lasers Eng. 2013;51:1044-1052.
Saeed H, Ali H, Soudan H, et al. Molecular cloning, structural modeling and production of recombinant aspergillus terreus asparaginase in Escherichia coli. Int J Biol Macromol. 2018;106:1041-1051.
Briand L, Marcion G, Kriznik A, et al. A self-inducible heterologous protein expression system in Escherichia coli. Sci Rep. 2016;6:33037.
Mao YJ, Wu JB, Yang ZQ, Zhang YH, Huang ZJ. Nitric oxide donating anti-glaucoma drugs: advances and prospects. Chin J Nat Med. 2020;18:275-283.
Yu TH, Yi YC, Shih IT, Ng IS. Enhanced 5-aminolevulinic acid production by co-expression of codon optimized hemA gene with chaperone in genetic engineered Escherichia coli. Appl Biochem Biotechnol. 2020;191:299-312.
Dvorak P, Chrast L, Nikel PI, et al. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21 (DE3) carrying a synthetic metabolic pathway. Microb Cell Fact. 2015;14:1-15.
Kassinger SJ, van Hoek ML. Biofilm architecture: an emerging synthetic biology target. Synth Syst Biotechnol. 2020;5:1-10.
Jones CJ, Wozniak DJ. Congo red stain identifies matrix overproduction and is an indirect measurement for c-di-GMP in many species of bacteria. Methods Mol Biol. 2017;1657:147-156.
Braeken L, Ramaekers R, Zhang Y, Maes G, Van der Bruggen B, Vandecasteele C. Influence of hydrophobicity on retention in nanofiltration of aqueous solutions containing organic compounds. J Membr Sci. 2005;252:195-203.
Blickling S, Renner C, Laber B, Pohlenz HD, Holak TA, Huber R. Reaction mechanism of Escherichia coli dihydrodipicolinate synthase investigated by X-ray crystallography and NMR spectroscopy. Biochemistry. 1997;36:24-33.
Liu N, Zhang TT, Rao ZM, Zhang WG, Xu JZ. Reconstruction of the diaminopimelic acid pathway to promote L-lysine production in Corynebacterium glutamicum. Int J Mol Sci. 2021;22:9065.
Scheffers DJ, Pinho MG. Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev. 2005;69:585-607.
Impey RE, Panjikar S, Hall CJ, et al. Identification of two dihydrodipicolinate synthase isoforms from Pseudomonas aeruginosa that differ in allosteric regulation. FEBS J. 2020;287:386-400.
Tan SI, Ng IS. New insight into plasmid-driven T7 RNA polymerase in Escherichia coli and use as a genetic amplifier for a biosensor. ACS Synth Biol. 2020;9:613-622.
Tran P, Prindle A. Synthetic biology in biofilms: tools, challenges, and opportunities. Biotech Prog. 2021;37:e3123.
Behera BC, Mishra RR, Thatoi H. Recent biotechnological tools for diagnosis of corona virus disease: a review. Biotech Prog. 2021;37:e3078.
Gómez-Tatay L, Hernández-Andreu JM. Biosafety and biosecurity in synthetic biology: a review. Crit Rev Environ Sci Technol. 2019;49:1587-1621.
Wang F, Zhang W. Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions. Int J Biosaf Biosecurity. 2019;1:22-30.
Lan YJ, Tan SI, Cheng SY, et al. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochem Eng J. 2021;168:107952.
Mansouri K, Medeiros FA, Tafreshi A, Weinreb RN. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch Ophthalmol. 2012;130:1534-1539.
Grant Information:
MOST 110-2221-E-006-030-MY3 Ministry of Science and Technology, Taiwan; MOST 110-2314-B-006-086-MY3 Ministry of Science and Technology, Taiwan
Contributed Indexing:
Keywords: contact lens; genetic E. coli; glaucoma; intraocular pressure (IOP); nitric oxide synthase
Substance Nomenclature:
31C4KY9ESH (Nitric Oxide)
EC 1.14.13.39 (Nitric Oxide Synthase)
Entry Date(s):
Date Created: 20220708 Date Completed: 20221221 Latest Revision: 20221222
Update Code:
20240105
DOI:
10.1002/btpr.3285
PMID:
35801317
Czasopismo naukowe
Glaucoma is the leading cause of irreversible blindness due to increased intraocular pressure (IOP) in the eye. We have developed a novel treatment option for glaucoma based on a real-time IOP-dependent nitric oxide synthase (NOS) and packed in a therapeutic contact lens to reduce the IOP. First, 1.6 nmole nitric oxide was produced from the genetic chassis, which was optimized for isopropyl β-d-1-thiogalactopyranoside (IPTG) induction in a T7 expression system. For biosafety concerns to human being, the csgAD genes responsible for curli biofilm formation in Escherichia coli were co-expressed with NOS in the designated NOSAD strain to strengthen the adherence of cells to the contact lens, thereby preventing the contamination into the eyes. Moreover, NOSAD is a diaminopimelic acid (DAP) auxotrophic strain, which cannot survive without supplementation of DAP and reached the critical consideration of biosafety to the environment. We also demonstrated that the nitric oxide diffusion was 3.6-times enhanced from penetration into the aqueous humor of porcine eyes. The deformation ratio of the contact lens was correlated to the change of IOP by using a digital image correlation (DIC) system in a porcine eye model. The novel systematic approach provides an alternative treatment for glaucoma patients in the future.
(© 2022 American Institute of Chemical Engineers.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies