Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Sevoflurane reduces lipopolysaccharide-induced apoptosis and pulmonary fibrosis in the RAW264.7 cells and mice models to ameliorate acute lung injury by eliminating oxidative damages.

Tytuł:
Sevoflurane reduces lipopolysaccharide-induced apoptosis and pulmonary fibrosis in the RAW264.7 cells and mice models to ameliorate acute lung injury by eliminating oxidative damages.
Autorzy:
Zheng F; Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
Wu X; Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
Zhang J; Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
Fu Z; Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
Zhang Y; Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
Źródło:
Redox report : communications in free radical research [Redox Rep] 2022 Dec; Vol. 27 (1), pp. 139-149.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2016- : Abingdon : Taylor & Francis
Original Publication: Edinburgh ; New York : Churchill Livingstone, c1994-
MeSH Terms:
Acute Lung Injury*/chemically induced
Acute Lung Injury*/drug therapy
Acute Lung Injury*/metabolism
Oxidative Stress*
Pulmonary Fibrosis*/chemically induced
Pulmonary Fibrosis*/metabolism
Pulmonary Fibrosis*/pathology
Sevoflurane*/therapeutic use
Animals ; Antioxidants/metabolism ; Apoptosis ; Kelch-Like ECH-Associated Protein 1/metabolism ; Lipopolysaccharides ; Lung/metabolism ; Mice ; NF-E2-Related Factor 2/metabolism ; RAW 264.7 Cells ; Reactive Oxygen Species/metabolism
References:
J Pharm Pharmacol. 2020 Feb;72(2):259-270. (PMID: 31729764)
Expert Rev Respir Med. 2010 Dec;4(6):773-83. (PMID: 21128752)
Oncol Lett. 2012 Dec;4(6):1247-1253. (PMID: 23205122)
Int J Clin Exp Pathol. 2015 Oct 01;8(10):13114-9. (PMID: 26722509)
Ann Am Thorac Soc. 2017 Sep;14(Supplement_3):S210-S215. (PMID: 28945469)
Curr Drug Targets Cardiovasc Haematol Disord. 2003 Sep;3(3):199-208. (PMID: 12871038)
Antioxidants (Basel). 2022 Feb 10;11(2):. (PMID: 35204233)
Anesth Analg. 2017 May;124(5):1555-1563. (PMID: 28431421)
Arch Pathol Lab Med. 2017 Jul;141(7):916-922. (PMID: 27652982)
Front Cell Neurosci. 2016 Nov 30;10:271. (PMID: 27965539)
Antioxid Redox Signal. 2008 Apr;10(4):739-53. (PMID: 18179359)
Pulm Pharmacol Ther. 2000;13(2):61-9. (PMID: 10799283)
Adv Exp Med Biol. 2017;967:105-137. (PMID: 29047084)
Mol Med Rep. 2020 Jan;21(1):123-130. (PMID: 31746402)
Eur J Med Chem. 2021 Oct 15;222:113599. (PMID: 34119834)
J Thorac Dis. 2019 Sep;11(Suppl 14):S1688-S1697. (PMID: 31632746)
Mol Ther. 2002 Aug;6(2):219-26. (PMID: 12161188)
Cell. 2008 Apr 18;133(2):235-49. (PMID: 18423196)
Biomed Pharmacother. 2016 Dec;84:1126-1136. (PMID: 27780142)
Respir Physiol Neurobiol. 2015 Apr;209:52-8. (PMID: 25466727)
Respir Med. 2016 Oct;119:23-28. (PMID: 27692143)
Int J Nanomedicine. 2013;6:1075-81. (PMID: 23515704)
Mol Med Rep. 2018 Sep;18(3):2923-2928. (PMID: 30015951)
Clin Exp Immunol. 2009 Feb;155(2):224-30. (PMID: 19032551)
FASEB J. 2016 Jan;30(1):66-80. (PMID: 26340923)
Mol Med Rep. 2015 Jul;12(1):1082-90. (PMID: 25815524)
J Hazard Mater. 2020 Jul 15;394:122549. (PMID: 32283380)
Cytokine Growth Factor Rev. 2003 Dec;14(6):523-35. (PMID: 14563354)
Biomed Rep. 2015 May;3(3):408-412. (PMID: 26137246)
Nutrients. 2018 Sep 01;10(9):. (PMID: 30200495)
Arch Pathol Lab Med. 2016 Apr;140(4):345-50. (PMID: 27028393)
Eur Rev Med Pharmacol Sci. 2018 Mar;22(5):1402-1408. (PMID: 29565500)
PLoS One. 2018 Feb 22;13(2):e0192896. (PMID: 29470503)
Drugs. 1996 Apr;51(4):658-700. (PMID: 8706599)
J Transl Med. 2021 Mar 2;19(1):96. (PMID: 33653364)
Biochim Biophys Acta Mol Basis Dis. 2017 Feb;1863(2):585-597. (PMID: 27825853)
Redox Biol. 2014 Feb 28;2:832-46. (PMID: 25009785)
Int J Surg. 2016 Oct;34:41-46. (PMID: 27562690)
Ann Thorac Surg. 2017 May;103(5):1578-1586. (PMID: 28190546)
Redox Biol. 2017 Aug;12:311-324. (PMID: 28285192)
Chem Biol Interact. 2020 May 1;322:109027. (PMID: 32147387)
Oxid Med Cell Longev. 2017;2017:9634803. (PMID: 28751936)
J Biol Chem. 2003 Feb 14;278(7):4536-41. (PMID: 12446695)
Cancer Res. 2007 Jan 15;67(2):546-54. (PMID: 17234762)
Cell Mol Life Sci. 2016 Sep;73(17):3221-47. (PMID: 27100828)
Int J Mol Sci. 2020 Jul 06;21(13):. (PMID: 32640524)
Nutrients. 2020 Jun 10;12(6):. (PMID: 32532087)
Contributed Indexing:
Keywords: Sevoflurane; cell apoptosis; lipopolysaccharide; oxidative stress; pulmonary fibrosis
Substance Nomenclature:
0 (Antioxidants)
0 (Kelch-Like ECH-Associated Protein 1)
0 (Lipopolysaccharides)
0 (NF-E2-Related Factor 2)
0 (Reactive Oxygen Species)
38LVP0K73A (Sevoflurane)
Entry Date(s):
Date Created: 20220708 Date Completed: 20220711 Latest Revision: 20220716
Update Code:
20240105
PubMed Central ID:
PMC9272930
DOI:
10.1080/13510002.2022.2096339
PMID:
35801580
Czasopismo naukowe
Objectives: Sevoflurane is identified as an effective candidate drug for acute lung injury (ALI) treatment, but its curing effects and detailed mechanisms have not been fully disclosed. The present study was designed to resolve this academic issue.
Methods: The ALI mice models were established, and Hematoxylin-eosin staining assay was performed to examine tissue morphologies. Cell viability was determined by CCK-8 assay, and Annexin V-FITC/PI double staining assay was used to examine cell apoptosis. The expression levels of proteins were determined by performing Western Blot analysis and immunofluorescence staining assay. ROS levels were examined by using DCFH-DA staining assay.
Results: In this study, we investigated this issue and the ALI models were respectively established by treating the BALB/c mice and the murine macrophage cell line RAW264.7 with different concentrations of lipopolysaccharide (LPS) in vivo and in vitro, which were subsequently subjected to sevoflurane co-treatment. The results showed that sevoflurane reduced LPS-induced ALI in mice and suppressed LPS-triggered oxidative stress and apoptotic cell death in the RAW264.7 cells. Interestingly, we evidenced that the elimination of reactive oxygen species (ROS) by N-acetyl-L-cysteine (NAC) reversed LPS-induced cell apoptosis in RAW264.7 cells. Then, we verified that sevoflurane suppressed oxidative damages to restrain LPS-induced apoptotic cell death in the RAW264.7 cells through activating the anti-oxidant Keap1/Nrf2 pathway. Mechanistically, sevoflurane down-regulated Keap1 and upregulated Nrf2 in nucleus to activate the downstream anti-oxidant signaling cascades, which further ameliorated LPS-induced cell apoptosis and lung injury by eliminating oxidative damages.
Discussion: Taken together, our study illustrated that the sevoflurane attenuates LPS-induced ALI by inhibiting oxidative stress-mediated apoptotic cell death and inflammation, and the Keap1/Nrf2 pathway played an important role in this process.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies