Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

CoCl 2 -simulated hypoxia potentiates the osteogenic differentiation of fibroblasts derived from tympanosclerosis by upregulating the expression of BMP-2.

Tytuł:
CoCl 2 -simulated hypoxia potentiates the osteogenic differentiation of fibroblasts derived from tympanosclerosis by upregulating the expression of BMP-2.
Autorzy:
Zhang C; ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Liu YW; ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China.
Chen M; ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China.
Min S; ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China.
Mao J; ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China.
Li Q; Stomatology Department, Eye & ENT Hospital, Fudan University, Shanghai, China.
Chi Z; ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China.
Źródło:
Cell biology international [Cell Biol Int] 2022 Sep; Vol. 46 (9), pp. 1423-1432. Date of Electronic Publication: 2022 Jul 10.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2013- : John Wiley & Sons Chichester :
Original Publication: London, UK : Published for the International Federation for Cell Biology by Academic Press, c1993-
MeSH Terms:
Bone Morphogenetic Protein 2*/metabolism
Myringosclerosis*/metabolism
Osteogenesis*
Cell Hypoxia/physiology ; Cells, Cultured ; Cobalt ; Fibroblasts/metabolism ; Fibrosis ; Humans ; Hypoxia/metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Vimentin/metabolism
References:
Bauer, H., Lele, Z., Rauch, G. J., Geisler, R., & Hammerschmidt, M. (2001). The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development, 128(6), 849-858. https://www.ncbi.nlm.nih.gov/pubmed/11222140.
Bouletreau, P. J., Warren, S. M., Spector, J. A., Peled, Z. M., Gerrets, R. P., Greenwald, J. A., & Longaker, M. T. (2002). Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: Implications for fracture healing. Plastic and Reconstructive Surgery, 109(7), 2384-2397. https://doi.org/10.1097/00006534-200206000-00033.
Chen, G., Deng, C., & Li, Y. P. (2012). TGF-beta and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Sciences, 8(2), 272-288. https://doi.org/10.7150/ijbs.2929.
Clark, J. A., Turner, M. L., Howard, L., Stanescu, H., Kleta, R., & Kopp, J. B. (2009). Description of familial keloids in five pedigrees: Evidence for autosomal dominant inheritance and phenotypic heterogeneity. BMC Dermatology, 9, 8. https://doi.org/10.1186/1471-5945-9-8.
Darby, I. A., & Hewitson, T. D. (2016). Hypoxia in tissue repair and fibrosis. Cell and Tissue Research, 365(3), 553-562. https://doi.org/10.1007/s00441-016-2461-3.
Distler, J. H. W., Jüngel, A., Pileckyte, M., Zwerina, J., Michel, B. A., Gay, R. E., Kowal-Bielecka, O., Matucci-Cerinic, M., Schett, G., Marti, H. H., Gay, S., & Distler, O. (2007). Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthtitis and Rheumatism, 56(12), 4203-4215. https://doi.org/10.1002/art.23074.
Gibb, A. G., & Pang, Y. T. (1994). Current considerations in the etiology and diagnosis of tympanosclerosis. European Archives of Oto-rhino-laryngology, 251(8), 439-451. https://doi.org/10.1007/BF00175993.
Gwak, G. Y., Yoon, J. H., Kim, K. M., Lee, H. S., Chung, J. W., & Gores, G. J. (2005). Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. Journal of Hepatology, 42(3), 358-364. https://doi.org/10.1016/j.jhep.2004.11.020.
Hoshi, K., Amizuka, N., Sakou, T., Kurokawa, T., & Ozawa, H. (1997). Fibroblasts of spinal ligaments pathologically differentiate into chondrocytes induced by recombinant human bone morphogenetic protein-2: Morphological examinations for ossification of spinal ligaments. Bone, 21(2), 155-162. https://doi.org/10.1016/s8756-3282(97)00106-3.
Huang, Z., Ren, P. G., Ma, T., Smith, R. L., & Goodman, S. B. (2010). Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine, 51(3), 305-310. https://doi.org/10.1016/j.cyto.2010.06.002.
Katagiri, T., & Watabe, T. (2016). Bone morphogenetic proteins. Cold Spring Harbor Perspectives in Biology, 8(6), a021899. https://doi.org/10.1101/cshperspect.a021899.
Lafont, J. E., Poujade, F. A., Pasdeloup, M., Neyret, P., & Mallein-Gerin, F. (2016). Hypoxia potentiates the BMP-2 driven COL2A1 stimulation in human articular chondrocytes via p38 MAPK. Osteoarthritis and Cartilage, 24(5), 856-867. https://doi.org/10.1016/j.joca.2015.11.017.
Leal, M. C., Bento, R. F., Neto, S. S. C., Caldas, N., Peixoto, C. A., Lessa, D., Leão RS, S., & Bezerra, T. (2006). Influence of hypercalcemia in the formation of tympanosclerosis in rats. Otology & Neurotology, 27(1), 27-32. https://doi.org/10.1097/01.mao.0000187049.66168.04.
Liu, X., Li, Y., Zheng, Y., & Zhang, Z. (2009). [Expression and localization of macrophages and BMP2 in mucosa of tympanosclerosis]. Journal of Clinical Otorhinolaryngology, Head, and Neck Surgery, 23(7), 298-301. https://www.ncbi.nlm.nih.gov/pubmed/19670606.
Luu, H. H., Song, W. X., Luo, X., Manning, D., Luo, J., Deng, Z. L., Sharff, K. A., Montag, A. G., Haydon, R. C., & He, T. C. (2007). Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. Journal of Orthopaedic Research, 25(5), 665-677. https://doi.org/10.1002/jor.20359.
Mack, M. (2018). Inflammation and fibrosis. Matrix Biology, 68-69, 106-121. https://doi.org/10.1016/j.matbio.2017.11.010.
Munoz-Sanchez, J., & Chanez-Cardenas, M. E. (2019). The use of cobalt chloride as a chemical hypoxia model. Journal of Applied Toxicology, 39(4), 556-570. https://doi.org/10.1002/jat.3749.
Nemati, S., Saberi, A., Faghih Habibi, A., Hemmati, H., Jafari-Shakib, R., Hedayati Ch, M., & Bozorgzadeh, E. (2020). Tympanosclerosis and atherosclerosis plaques: A comparative analytical study on some new microbiological and immunohistochemical aspects. European Archives of Oto-rhino-laryngology, 278, 3743-3752. https://doi.org/10.1007/s00405-020-06451-4.
Ozec, Y., Ozturk, M., Kylyc, E., Yeler, H., Goze, F., & Gumus, C. (2006). Effect of recombinant human bone morphogenetic protein-2 on mandibular distraction osteogenesis. The Journal of Craniofacial Surgery, 17(1), 80-83. https://doi.org/10.1097/01.scs.0000188747.60087.40.
Qiu, J., Wang, Y., Guo, W., Xu, L., Mou, Y., Cui, L., Han, F., & Sun, Y. (2021). Role of TGF-beta1-mediated epithelial-mesenchymal transition in the pathogenesis of tympanosclerosis. Experimental and Therapeutic Medicine, 21(1), 6. https://doi.org/10.3892/etm.2020.9438.
Russell, J. D., & Giles, J. J. (2002). Tympanosclerosis in the rat tympanic membrane: an experimental study. Laryngoscope, 112(9), 1663-1666. https://doi.org/10.1097/00005537-200209000-00025.
Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., Tagliafico, E., Ferrari, S., Robey, P. G., Riminucci, M., & Bianco, P. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131(2), 324-336. https://doi.org/10.1016/j.cell.2007.08.025.
Santos, P. F., Leal, M. C., Peixoto, C., Caldas Neto, S., & Rosas, S. T. (2005). Otomicroscopic and histologic findings of induced myringosclerosis in rats: A critical study of an experimental model. Braz J Otorhinolaryngol, 71(5), 668-674. https://doi.org/10.1016/s1808-8694(15)31272-6.
Selcuk, A., Ensari, S., Sargin, A. K., Can, B., & Dere, H. (2008). Histopathological classification of tympanosclerotic plaques. European Archives of Otorhinolaryngology, 265(4), 409-413. https://doi.org/10.1007/s00405-007-0511-x.
Shin, S. G., Koh, S. H., Woo, C. H., & Lim, J. H. (2014). PAI-1 inhibits development of chronic otitis media and tympanosclerosis in a mouse model of otitis media. Acta Otolaryngologica, 134(12), 1231-1238. https://doi.org/10.3109/00016489.2014.940554.
Sokolowska, P., Urbanska, A., Bieganska, K., Wagner, W., Ciszewski, W., Namiecinska, M., & Zawilska, J. B. (2014). Orexins protect neuronal cell cultures against hypoxic stress: an involvement of Akt signaling. Journal of Molecular Neuroscience, 52(1), 48-55. https://doi.org/10.1007/s12031-013-0165-7.
Takahashi, H., Goto, N., Kojima, Y., Tsuda, Y., Morio, Y., Muramatsu, M., & Fukuchi, Y. (2006). Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. American Journal of Physiology: Lung Cellular and Molecular Physiology, 290(3), L450-L458. https://doi.org/10.1152/ajplung.00206.2005.
Tseng, W. P., Yang, S. N., Lai, C. H., & Tang, C. H. (2010). Hypoxia induces BMP-2 expression via ILK, Akt, mTOR, and HIF-1 pathways in osteoblasts. Journal of Cellular Physiology, 223(3), 810-818. https://doi.org/10.1002/jcp.22104.
Tsuji, K., Bandyopadhyay, A., Harfe, B. D., Cox, K., Kakar, S., Gerstenfeld, L., Einhorn, T., Tabin, C. J., & Rosen, V. (2006). BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genetics, 38(12), 1424-1429. https://doi.org/10.1038/ng1916.
Ulsamer, A., Ortuno, M. J., Ruiz, S., Susperregui, A. R., Osses, N., Rosa, J. L., & Ventura, F. (2008). BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. Journal of Biological Chemistry, 283(7), 3816-3826. https://doi.org/10.1074/jbc.M704724200.
Yamaguchi, A., Katagiri, T., Ikeda, T., Wozney, J. M., Rosen, V., Wang, E. A., Kahn, A. J., Suda, T., & Yoshiki, S. (1991). Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. Journal of Cell Biology, 113(3), 681-687. https://doi.org/10.1083/jcb.113.3.681.
Zebboudj, A. F., Shin, V., & Bostrom, K. (2003). Matrix GLA protein and BMP-2 regulate osteoinduction in calcifying vascular cells. Journal of Cellular Biochemistry, 90(4), 756-765. https://doi.org/10.1002/jcb.10669.
Zhang, Q., Wu, Y., Ann, D. K., Messadi, D. V., Tuan, T. L., Kelly, A. P., Bertolami, C. N., & Le, A. D. (2003). Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts. Journal of Investigative Dermatology, 121(5), 1005-1012. https://doi.org/10.1046/j.1523-1747.2003.12564.x.
Grant Information:
20174Y0062 Shanghai Municipal Health Bureau
Contributed Indexing:
Keywords: fibroblasts; hypoxia; ossification; tympanosclerosis
Substance Nomenclature:
0 (BMP2 protein, human)
0 (Bone Morphogenetic Protein 2)
0 (HIF1A protein, human)
0 (Hypoxia-Inducible Factor 1, alpha Subunit)
0 (Vimentin)
3G0H8C9362 (Cobalt)
EVS87XF13W (cobaltous chloride)
Entry Date(s):
Date Created: 20220711 Date Completed: 20220805 Latest Revision: 20220809
Update Code:
20240105
DOI:
10.1002/cbin.11845
PMID:
35811437
Czasopismo naukowe
Tympanosclerosis (TS) is a result of long-standing middle ear inflammation characterized by fibroblasts ossification. Fibrosis is the last revertible stage in the progress of middle ear inflammation to TS. It was hypothesized that chronic hypoxia could be modulating fibrosis, which in turn additionally further aggravated hypoxia via decreasing oxygen diffusion. However, the effects of hypoxia on osteoinductive activity of fibroblasts have not been explored. Herein, we purposed to explore the role of hypoxia in osteogenic differentiation of fibroblasts derived from TS. The expression of bone morphogenetic protein-2 (BMP-2), hypoxia-inducible factor-1α (HIF-1α), and Vimentin in the human surgical specimens of tympansclerosis was investigated by immunofluorescent staining. Furthermore, cultured fibroblasts were stratified into the following study groups: control, 25, 50, and 100 μM cobaltous chloride (CoCl 2 ) group. BMP-2, as well as HIF-1α levels of expression were detected via western blotting and immunofluorescence analysis. We found that the expression of BMP-2 and HIF-1α was significantly upregulated in TS tissues and these fibroblasts, which was vimentin positive surrounding sclerotic plaques, were also expressing HIF-1α positive. The results also demonstrated that CoCl 2 treatment increased nuclear HIF-1α protein level in the fibroblast. Furthermore, treatment with CoCl 2 significantly increased BMP-2 expression and remarkably elevated alkaline phosphatse activity and the mineralized nodules area. These data illustrate that hypoxia may play an osteogenic role in TS fibroblasts via the elevated expression of a possible osteogenic factor, BMP-2.
(© 2022 International Federation for Cell Biology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies