Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Recent advances in nanomaterial developments for efficient removal of Hg(II) from water.

Tytuł:
Recent advances in nanomaterial developments for efficient removal of Hg(II) from water.
Autorzy:
Rani L; Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India.; Chitkara University School of Pharmacy, Chitkara University, Himachal-Pradesh, India.
Srivastav AL; Chitkara University School of Engineering and Technology, Chitkara University, Himachal-Pradesh, India. .
Kaushal J; Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India.
Nguyen XC; Laboratory of energy and environmental science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Sep; Vol. 29 (42), pp. 62851-62869. Date of Electronic Publication: 2022 Jul 13.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Mercury*/analysis
Nanostructures*
Water Pollutants, Chemical*/analysis
Water Purification*/methods
Zeolites*
Adsorption ; Clay ; Hydrogen-Ion Concentration
References:
Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M et al (2021) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interf Sci 300:102597. https://doi.org/10.1016/j.cis.2021.102597. (PMID: 10.1016/j.cis.2021.102597)
Akhbarizadeh R, Shayestefar MR, Darezereshki E (2013) Competitive removal of metals from wastewater by maghemite nanoparticles: a comparison between simulated wastewater and AMD. Mine Water Environ:1–7. https://doi.org/10.1007/s10230-013-0255-3.
Amyot M, Gill GA, Morel FM (1997) Production and loss of dissolved gaseous mercury in coastal seawater. Environ Sci Technol 31(12):3606–3611. https://doi.org/10.1021/es9703685. (PMID: 10.1021/es9703685)
Annamalai J, Nallamuthu T (2016) Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl Nanosci 6(2):259–265. (PMID: 10.1007/s13204-015-0426-6)
Arshadi M (2015) Manganese chloride nanoparticles: a practical adsorbent for the sequestration of Hg (II) ions from aqueous solution. Chem Eng J 259:170–182. https://doi.org/10.1016/j.cej.2014.07.111. (PMID: 10.1016/j.cej.2014.07.111)
Ashour RM, Abdel-Magied AF, Abdel-Khalek AA, Helaly OS, Ali MM (2016) Preparation and characterization of magnetic iron oxide nanomaterials functionalized by l-cysteine: adsorption and desorption behavior for rare earth metal ions. J Environ Chem Eng 4(3):3114–3121. https://doi.org/10.1016/j.jece.2016.06.022. (PMID: 10.1016/j.jece.2016.06.022)
Badruddoza AZM, Shawon ZBZ, Rahman MT, Hao KW, Hidajat K, Uddin MS (2013) Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem Eng J 225:607–615. https://doi.org/10.1016/j.cej.2013.03.114. (PMID: 10.1016/j.cej.2013.03.114)
Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2(6):1821–1871. (PMID: 10.1039/D0MA00807A)
Balderas-Hernández P, Roa-Morales G, Ramírez-Silva MT, Romero-Romo M, Rodríguez-Sevilla E, Esparza-Schulz JM, Juárez-Gómez J (2017) Effective mercury (II) bioremoval from aqueous solution, and its electrochemical determination. Chemosphere 167:314–321. https://doi.org/10.1016/j.chemosphere.2016.10.009. (PMID: 10.1016/j.chemosphere.2016.10.009)
Bao S, Li K, Ning P, Peng J, Jin X, Tang L (2017) Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: behaviours and mechanisms. App Sur Sci 393:457-66.a.
BIS (2012) Bureau of Indian Standard, 2nd Revision edn. Indian Standard for Drinking Water-Specification, New Delhi.
Bose-O'Reilly S, McCarty KM, Steckling N, Lettmeier B (2010) Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care 40(8):186–215. (PMID: 10.1016/j.cppeds.2010.07.002)
Boszke L, Glosinska G, Siepak J (2002) Some aspects of speciation of mercury in water environment. Pol J Environ Stud 11(4):285–298.
Boszke L, Kowalski A, Glosifiska G, Szarek R, Siepak J (2003) Environmental factors affecting speciation of mercury in the bottom sediments; an overview. Pol J Environ Stud 12(1):5–13. https://doi.org/10.1021/es2010072. (PMID: 10.1021/es2010072)
Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034. (PMID: 10.1016/j.ecoenv.2017.11.034)
Cao CY, Cui ZM, Chen CQ, Song WG, Cai W (2010) Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem C 114(21):9865–9870. https://doi.org/10.1021/jp101553x. (PMID: 10.1021/jp101553x)
Charbgoo F, Ahmad MB, Darroudi M (2017) Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomedicine 12:1401. (PMID: 10.2147/IJN.S124855)
Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959. https://doi.org/10.1021/cr0500535. (PMID: 10.1021/cr0500535)
Chen B, Wang T, Yin Y, He B, Jiang G (2007) Methylation of inorganic mercury by methylcobalamin in aquatic systems. Appl Organomet Chem 21(6):462–467. https://doi.org/10.1002/aoc.1221. (PMID: 10.1002/aoc.1221)
Clever HL, Johnson SA, Derrick ME (1985) The solubility of mercury and some sparingly soluble mercury salts in water and aqueous electrolyte solutions. J Phys Chem Ref Data 14(3):631–680. https://doi.org/10.1063/1.555732. (PMID: 10.1063/1.555732)
Da’na E, Sayari A (2011) Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: equilibrium properties. Chem Eng J 166(1):445–453. https://doi.org/10.1016/j.cej.2010.11.016. (PMID: 10.1016/j.cej.2010.11.016)
Dąbrowski A (2001) Adsorption—from theory to practice. Adv Colloid Interf Sci 93(1-3):135–224. (PMID: 10.1016/S0001-8686(00)00082-8)
Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698+. (PMID: 10.1021/cr030698+)
Daraio C, Jin S (2012) Synthesis and patterning methods for nanostructures useful for biological applications. In: Nanotechnology for biology and medicine. Springer, New York, pp 27–44. (PMID: 10.1007/978-0-387-31296-5_2)
Das S, Samanta A, Kole K, Gangopadhyay G, Jana S (2020) MnO 2 flowery nanocomposites for efficient and fast removal of mercury (II) from aqueous solution: A facile strategy and mechanistic interpretation. Dalton Trans 49(20):6790–6800. https://doi.org/10.1039/D0DT01054E. (PMID: 10.1039/D0DT01054E)
de Almeida Rodrigues P, Ferrari RG, Dos Santos LN, Junior CAC (2019) Mercury in aquatic fauna contamination: a systematic review on its dynamics and potential health risks. J Environ Sci 84:205–218. (PMID: 10.1016/j.jes.2019.02.018)
Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW et al (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5(127):105003–105037. (PMID: 10.1039/C5RA19388E)
Dindar MH, Yaftian MR, Hajihasani M, Rostamnia S (2016) Refinement of contaminated water by Cr (VI), As (V) and Hg (II) using N-donor ligands arranged on SBA-15 platform; batch and fixed-bed column methods. J Taiwan Inst Chem Eng 67:325–337. https://doi.org/10.1016/j.jtice.2016.07.042. (PMID: 10.1016/j.jtice.2016.07.042)
Yao W, Ni T, Chen S, Li H, Lu Y (2014) Graphene/Fe3O4@ polypyrrole nanocomposites as a synergistic adsorbent for Cr (VI) ion removal. Compos Sci Technol 99:15–22. https://doi.org/10.1016/j.compscitech.2014.05.007. (PMID: 10.1016/j.compscitech.2014.05.007)
Dobson P (2016) talk on ‘NPs: What do we need to know and can we measure everything we need to?’ at ‘Nanoparticle characterisation – challenges for the community’ event – IOP (Institute of Physics). book of abstracts, London.
Donald IW (2010) Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes. John Wiley and Sons. https://doi.org/10.1002/9781444319354.ch5. (PMID: 10.1002/9781444319354.ch5)
El-Tawil RS, El-Wakeel ST, Abdel-Ghany AE, Abuzeid HA, Selim KA, Hashem AM (2019) Silver/quartz nanocomposite as an adsorbent for removal of mercury (II) ions from aqueous solutions. Heliyon 5(9):e02415. (PMID: 10.1016/j.heliyon.2019.e02415)
Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. https://doi.org/10.1016/j.envint.2010.10.012. (PMID: 10.1016/j.envint.2010.10.012)
Fan Y, Liu Z, Zhan J (2009) Synthesis of starch-stabilized Ag nanoparticles and Hg ions from water samples. RSC Adv 5(54):43371–43380. https://doi.org/10.1039/C5RA06265A. (PMID: 10.1039/C5RA06265A)
Sheela T, Nayaka YA, Viswanatha R, Basavanna S, Venkatesha TG (2012) Kinetics and thermodynamics studies on the adsorption of Zn (II), Cd (II) and Hg (II) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217:163–170. https://doi.org/10.1016/j.powtec.2011.10.023. (PMID: 10.1016/j.powtec.2011.10.023)
Shen X, Wang Q, Chen W, Pang Y (2014) One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury (II) removal from aqueous solutions. Appl Surf Sci 317:1028–1034. https://doi.org/10.1016/j.apsusc.2014.09.033. (PMID: 10.1016/j.apsusc.2014.09.033)
Sitko R, Musielak M, Serda M, Talik E, Zawisza B, Gagor A, Malecka M (2021) Thiosemicarbazide-grafted graphene oxide as superior adsorbent for highly efficient and selective removal of mercury ions from water. Sep Purif Technol 254:117606. https://doi.org/10.1016/j.seppur.2020.117606. (PMID: 10.1016/j.seppur.2020.117606)
Solt I, Bornstein J (2010) Childhood vaccines and autism--much ado about nothing? Harefuah 149(4):251–255.
Li W, Ju B, Zhang S (2019) A green l-cysteine modified cellulose nanocrystals biosorbent for adsorption of mercury ions from aqueous solutions. RSC Adv 9(12):6986–6994. (PMID: 10.1039/C9RA00048H)
Srivastava S (2013) Sorption of divalent metal ions from aqueous solution by oxidized carbon nanotubes and nanocages: a review. Adv Mater Lett 4(1):2–8. https://doi.org/10.5185/amlett.2013.icnano.110. (PMID: 10.5185/amlett.2013.icnano.110)
Stein ED, Cohen Y, Winer AM (1996) Environmental distribution and transformation of mercury compounds. Crit Rev Environ Sci Technol 26(1):1–43. https://doi.org/10.1080/10643389609388485. (PMID: 10.1080/10643389609388485)
Sumesh E, Bootharaju MS, Pradeep T (2011) A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J Hazard Mater 189(1-2):450–457. https://doi.org/10.1016/j.powtec.2011.10.023. (PMID: 10.1016/j.powtec.2011.10.023)
Suvarapu LN, Seo YK, Baek SO (2013) Speciation and determination of mercury by various analytical techniques. Rev Anal Chem 32(3):225–245. (PMID: 10.1515/revac-2013-0003)
Tabatabaiee Bafrooee AA, Ahmad Panahi H, Moniri E, Miralinaghi M, Hasani AH (2020) Removal of Hg2+ by carboxyl-terminated hyperbranched poly (amidoamine) dendrimers grafted superparamagnetic nanoparticles as an efficient adsorbent. Enviro Sci Poll Res 27(9):9547–67. (PMID: 10.1007/s11356-019-07377-z)
Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T (2020) Understanding mercury methylation in the changing environment: recent advances in assessing microbial methylators and mercury bioavailability. Sci Total Environ 714:136827. https://doi.org/10.1016/j.scitotenv.2020.136827. (PMID: 10.1016/j.scitotenv.2020.136827)
Tauanov Z, Tsakiridis PE, Mikhalovsky SV, Inglezakis VJ (2018) Synthetic coal fly ashderived zeolites doped with silver nanoparticles for mercury (II) removal from water. J Environ Manag 224:164–171. (PMID: 10.1016/j.jenvman.2018.07.049)
Tavares DS, Lopes CB, Daniel-da-Silva AL, Vale C, Trindade T, Pereira ME (2016) Mercury in river, estuarine and seawaters–is it possible to decrease realist environmental concentrations in order to achieve environmental quality standards? Water Res 106:439–449. https://doi.org/10.1016/j.watres.2016.10.031. (PMID: 10.1016/j.watres.2016.10.031)
Tawabini B, Al-Khaldi S, Atieh M, Khaled M (2010) Removal of mercury from water by multi-walled carbon nanotubes. Water Sci Technol 61(3):591–598. https://doi.org/10.2166/wst.2010.897. (PMID: 10.2166/wst.2010.897)
Timmins KJ (2003). Artisanal gold mining without mercury pollution, United Nations Industrial Development Organization. Available: http://www.naturalresources.org/minerals/cd/docs/unido/asm_mercury.pdf . Accessed 10 Jan 2022.
Tulinski, M., & Jurczyk, M. (2017). Nanomaterials synthesis methods. Metrology and standardization of nanotechnology: protocols and industrial innovations, 75-98. https://doi.org/10.1002/9783527800308.ch4.
Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293. https://doi.org/10.1080/20016491089226. (PMID: 10.1080/20016491089226)
USEPA (2019) National Primary Drinking Water Regulations. United States Environmental Protection Agency, Washington.
Venkateswarlu S, Yoon M (2015) Surfactant-free green synthesis of Fe 3 O 4 nanoparticles capped with 3, 4-dihydroxyphenethylcarbamodithioate: stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg (II) ions from water. Dalton Trans 44(42):18427–18437. https://doi.org/10.1039/c5dt03155a. (PMID: 10.1039/c5dt03155a)
Vidu R, Rahman M, Mahmoudi M, Enachescu M, Poteca TD, Opris I (2014) Nanostructures: a platform for brain repair and augmentation. Front Syst Neurosci 8:91. https://doi.org/10.3389/fnsys.2014.00091. (PMID: 10.3389/fnsys.2014.00091)
Weber JH (1993) Review of possible paths for abiotic methylation of mercury (II) in the aquatic environment. Chemosphere 26(11):2063–2077. https://doi.org/10.1016/0045-6535(93)90032-Z. (PMID: 10.1016/0045-6535(93)90032-Z)
Xu L, Wang J (2017) The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit Rev Environ Sci Technol 47(12):1042–1105. https://doi.org/10.1080/10643389.2017.1342514. (PMID: 10.1080/10643389.2017.1342514)
Zhang C, Sui J, Li J, Tang Y, Cai W (2012) Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chem Eng J 210:45–52. (PMID: 10.1016/j.cej.2012.08.062)
Contributed Indexing:
Keywords: Adsorption; Mercury removal; Nanomaterials; Water purification
Substance Nomenclature:
0 (Water Pollutants, Chemical)
1318-02-1 (Zeolites)
FXS1BY2PGL (Mercury)
T1FAD4SS2M (Clay)
Entry Date(s):
Date Created: 20220713 Date Completed: 20220919 Latest Revision: 20220919
Update Code:
20240104
DOI:
10.1007/s11356-022-21869-5
PMID:
35831652
Czasopismo naukowe
"Water" contamination by mercury Hg(II) has become the biggest concern due to its severe toxicities on public health. There are different conventional techniques like ion exchange, reverse osmosis, and filtration that have been used for the elimination of Hg(II) from the aqueous solutions. Although, these techniques have some drawbacks during the remediation of Hg(II) present in water. Adsorption could be a better option for the elimination of Hg(II) from the aqueous solutions. "Conventional adsorbents" like zeolite, clay, and activated carbons are inefficient for this purpose. Recently, nanomaterials have attracted attention for the elimination of Hg(II) from the aqueous solutions due to high porosity, better surface properties, and high efficiency. In this review, a thorough discussion has been carried out on the synthesis and characterization of nanomaterials along with mechanisms involved in the elimination of Hg(II) from aqueous solutions.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies