Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

NIR Photothermal-Responsive Shape Memory Polyurethane with Protein-Inspired Aggregated Chymotrypsin-Sensitive Degradable Domains.

Tytuł:
NIR Photothermal-Responsive Shape Memory Polyurethane with Protein-Inspired Aggregated Chymotrypsin-Sensitive Degradable Domains.
Autorzy:
Yang R; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Liu W; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Song N; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Li X; Zhengzhou Research Institute for Abrasives & Grinding Co., Ltd., Zhengzhou, 450001, China.
Li Z; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Luo F; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Li J; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Tan H; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Źródło:
Macromolecular rapid communications [Macromol Rapid Commun] 2022 Nov; Vol. 43 (21), pp. e2200490. Date of Electronic Publication: 2022 Jul 29.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2002- : Weinheim, Germany : Wiley-VCH
Original Publication: Basel ; Oxford, CT : Hüthig & Wepf, c1994-
MeSH Terms:
Polyurethanes*/chemistry
Smart Materials*
Chymotrypsin ; Biocompatible Materials/chemistry ; Temperature
References:
S. Mohsin, G. Kichenadasse, N. R. Choudhury, R. Butler, S. Garg, J. Controlled Release Off. J. Controlled Release Soc. 2013, 172, 105.
P. A. Testoni, Jop J. Pancreas 2007, 8, 141.
H. Isayama, Gut 2004, 53, 729.
K. Kratz, U. Voigt, A. Lendlein, Adv. Funct. Mater. 2012, 22, 3057.
A. T. Neffe, B. D. Hanh, S. Steuer, A. Lendlein, Adv. Mater. 2009, 21, 3394.
J. Laukkarinen, T. Lämsä, I. Nordback, J. Mikkonen, J. Sand, Gastrointest. Endoscopy 2008, 67, 1106.
A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Expert Rev. Med. Devices 2010, 7, 357.
P. T. Mather, X. Luo, I. A. Rousseau, Annu. Rev. Mater. Res. 2009, 39, 445.
Q. Zhao, M. Behl, A. Lendlein, Soft Matter 2013, 9, 1744.
M. Behl, M. Y. Razzaq, A. Lendlein, Adv. Mater. 2010, 22, 3388.
B. Q. Y. Chan, Z. W. K. Low, S. J. W. Heng, S. Y. Chan, C. Owh, X. J. Loh, ACS Appl. Mater. Interfaces 2016, 8, 10070.
Y. C. Chien, W. T. Chuang, U. S. Jeng, S. H. Hsu, ACS Appl. Mater. Interfaces 2017, 9, 5419.
H. Jia, K. Chang, S.-Y. Gu, Chin. J. Polym. Sci. 2019, 37, 1119.
H.-T. Wu, B.-Q. Jin, H. Wang, W.-Q. Wu, Z.-X. Cao, Z.-Y. Yuan, Y. Huang, W.-H. Li, G.-S. Huang, L.-S. Liao, J.-R. Wu, Chin. J. Polym. Sci. 2021, 39, 1299.
W.-K. Liu, Y. Zhao, R. Wang, F. Luo, J.-S. Li, J.-H. Li, H. Tan, Chin. J. Polym. Sci. 2018, 36, 514.
H. Zhuo, Z. Mei, H. Chen, S. Chen, Polymer 2018, 148, 119.
W. Liu, Y. Zhao, R. Wang, J. Li, J. Li, F. Luo, H. Tan, Q. Fu, Macromol. Rapid Commun. 2017, 38, 1700450.
S. H. Ajili, N. G. Ebrahimi, M. Soleimani, Acta Biomater. 2009, 5, 1519.
X. Li, W. Liu, Y. Li, W. Lan, D. Zhao, H. Wu, Y. Feng, X. He, Z. Li, J. Li, F. Luo, H. Tan, J. Mater. Chem. B 2020, 8, 5117.
R. Jiang, S. Cheng, L. Shao, Q. Ruan, J. Wang, J. Phys. Chem. C 2013, 117, 8909.
H. Ma, M. Xue, J. Mater. Chem. A 2021, 9, 17569.
S. Dai, G. Ao, M.-S. Kim, J. Ind. Eng. Chem. 2007, 13, 1162.
B. Strzemiecka, A. Voelkel, J. Donate-Robles, J. M. Martín-Martínez, Appl. Surf. Sci. 2014, 316, 315.
L. M. Dean, A. Ravindra, A. X. Guo, M. Yourdkhani, N. R. Sottos, ACS Appl. Polym. Mater. 2020, 2, 4690.
S. Liu, C. Huang, Int. J. Energy Res. 2020, 44, 8904.
R. Sun, H. Chen, L. Sutrisno, N. Kawazoe, G. Chen, Sci. Technol. Adv. Mater. 2021, 22, 404.
H. Yang, W. R. Leow, T. Wang, J. Wang, J. Yu, K. He, D. Qi, C. Wan, X. Chen, Adv. Mater. 2017, 29, 1701627.
A. Ben Abdeljlil, J. C. Palla, P. Desnuelle, Biochem. Biophys. Res. Commun. 1965, 18, 71.
J. V. Olsen, S. E. Ong, M. Mann, Mol. Cell. Proteomics 2004, 3, 608.
R. Wang, F. Zhang, W. Lin, W. Liu, J. Li, F. Luo, Y. Wang, H. Tan, Macromol. Biosci. 2018, 18, 1800054.
Y. Song, C. Sun, C. Tian, H. Ming, Y. Wang, W. Liu, N. He, X. He, M. Ding, J. Li, F. Luo, H. Tan, Q. Fu, Chem. Sci. 2022, 13, 5353.
J. Li, S. N. Rothstein, S. R. Little, H. M. Edenborn, T. Y. Meyer, J. Am. Chem. Soc. 2012, 134, 16352.
S. K. Saha, H. Tsuji, Macromol. Mater. Eng. 2006, 291, 357.
X. Chen, W. Chen, G. Zhu, F. Huang, J. Zhang, J. Appl. Polym. Sci. 2007, 104, 2643.
V. Crescenzi, G. Manzini, G. Calzolari, C. Borri, Eur. Polym. J. 1972, 8, 449.
Y. Li, L. Yuan, H. Ming, X. Li, L. Tang, J. Zhang, R. Wang, G. Wang, Y. Jiang, Z. Li, F. Luo, J. Li, H. Tan, Q. Fu, Biomacromolecules 2020, 21, 1460.
L. Tang, X. Long, X. He, M. Ding, D. Zhao, F. Luo, J. Li, Z. Li, H. Tan, H. Zhang, J. Mater. Chem. B 2021, 9, 3210.
Y. He, D. Xie, X. Zhang, J. Mater. Sci. 2014, 49, 7339.
B. Strzemiecka, A. Voelkel, J. Donate-Robles, J. M. Martín-Martínez, J. Chromatogr. A 2013, 1314, 249.
J.-W. Li, W.-C. Tsen, C.-H. Tsou, M.-C. Suen, C.-W. Chiu, Polymers 2019, 11, 1333.
H. S. Lee, Y. K. Wang, S. L. Hsu, Macromolecules 1987, 20, 2089.
H. Tan, M. Guo, R. Du, X. Xie, J. Li, Y. Zhong, Q. Fu, Polymer 2004, 45, 1647.
B.-X. Cheng, W.-C. Gao, X.-M. Ren, X.-Y. Ouyang, Y. Zhao, H. Zhao, W. Wu, C.-X. Huang, Y. Liu, X.-Y. Liu, H.-N. Li, R. K. Y. Li, Polym. Test. 2022, 107, 107489.
K. J. Cha, E. Lih, J. Choi, Y. K. Joung, D. J. Ahn, D. K. Han, Macromol. Biosci. 2014, 14, 667.
K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, F. Besenbacher, Langmuir 2006, 22, 10885.
T. Akkas, C. Citak, A. Sirkecioglu, F. S. Güner, Polym. Int. 2013, 62, 1202.
Y. A. Eltekov, Carbon 1994, 32, 931.
P. C. Caracciolo, F. Buffa, V. Thomas, Y. K. Vohra, G. A. Abraham, J. Appl. Polym. Sci. 2011, 121, 3292.
L. Zhang, C. Zhang, W. Zhang, H. Zhang, Z. Hou, J. Biomater. Sci., Polym. Ed. 2019, 30, 1212.
S. Mondal, D. Martin, Polym. Degrad. Stab. 2012, 97, 1553.
Grant Information:
51873122 National Natural Science Foundation of China; 51973134 National Natural Science Foundation of China; U1930204 NSAF
Contributed Indexing:
Keywords: NIR photothermal response; chymotrypsin; degradation; polyurethane; shape memory
Substance Nomenclature:
0 (Polyurethanes)
EC 3.4.21.1 (Chymotrypsin)
0 (Biocompatible Materials)
0 (Smart Materials)
Entry Date(s):
Date Created: 20220715 Date Completed: 20221107 Latest Revision: 20221107
Update Code:
20240104
DOI:
10.1002/marc.202200490
PMID:
35836315
Czasopismo naukowe
Biodegradable shape memory polymers are promising biomaterials for stents used in minimally invasive surgical procedures such as intestinal stents. Herein, a series of biodegradable shape memory polyurethanes (SMPUs) containing a novel phenylalanine-derived chain extender (PHP) are synthesized. Inspired by the fact that the function of biomacromolecules such as proteins is rich and varied because of the multiple combinations of the amino acid in highly evolved biosystems, this study finds that the sequence distribution of PHP in SMPU will also have a great influence on the phase structure and degradation behavior, especially the difference of surface morphology caused by degradation. Considering that the transition temperature (T trans ) of SMPU obtained is higher than physiological temperature, oxidized carbon black (OCB) with the ability of photothermal conversion is introduced into SMPU, which can not only endow SMPU with near-infrared response shape recovery characteristics, but also enhance phase separation degree and mechanical properties of them. SMPU/OCB composites show excellent shape memory effect and rapid photothermal response, and they can be degraded by chymotrypsin with an adjustable degradation rate. These SMPU/OCB composites show broad potential for application as intestinal stents.
(© 2022 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies