Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Resistance exercise with different workloads have distinct effects on cellular respiration of peripheral blood mononuclear cells.

Tytuł:
Resistance exercise with different workloads have distinct effects on cellular respiration of peripheral blood mononuclear cells.
Autorzy:
Lähteenmäki EI; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.; Research Centre for Physical Activity and Health LIKES, Jyväskylä, Finland.
Koski M; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.; Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
Koskela I; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
Lehtonen E; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
Kankaanpää A; Gerontology Research Center (GEREC), Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
Kainulainen H; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
Walker S; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.; Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
Lehti M; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.; Research Centre for Physical Activity and Health LIKES, Jyväskylä, Finland.
Źródło:
Physiological reports [Physiol Rep] 2022 Jul; Vol. 10 (14), pp. e15394.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [Malden MA] : published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society, 2013-
MeSH Terms:
Leukocytes, Mononuclear*/metabolism
Resistance Training*
C-Reactive Protein/metabolism ; Cell Respiration ; Exercise/physiology ; Humans ; Inflammation/metabolism ; Lactic Acid ; Leukocytes/metabolism ; Male ; Muscle, Skeletal/metabolism ; Workload
References:
Ahtiainen, J. P., Lehti, M., Hulmi, J. J., Kraemer, W. J., Alen, M., Nyman, K., Selänne, H., Pakarinen, A., Komulainen, J., Kovanen, V., Mero, A. A., & Häkkinen, K. (2011). Recovery after heavy resistance exercise and skeletal muscle androgen receptor and insulin-like growth factor-I isoform expression in strength trained men. Journal of Strength and Conditioning Research, 25(3), 767-777.
Baird, M. F., Graham, S. M., Baker, J. S., & Bickerstaff, G. F. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism, 2012, 1-13.
Becker, L., Semmlinger, L., & Rohleder, N. (2021). Resistance training as an acute stressor in healthy young men: Associations with heart rate variability, alpha-amylase, and cortisol levels. Stress, 24(3), 318-330.
Carlson, L. A., Tighe, S. W., Kenefick, R. W., Dragon, J., Westcott, N. W., & LeClair, R. J. (2011). Changes in transcriptional output of human peripheral blood mononuclear cells following resistance exercise. European Journal of Applied Physiology, 111(12), 2919-2929.
Chacko, B. K., Kramer, P. A., Ravi, S., Benavides, G. A., Mitchell, T., Dranka, B. P., Ferrick, D., Singal, A. K., Ballinger, S. W., Bailey, S. M., Hardy, R. W., Zhang, J., Zhi, D., & Darley-Usmar, V. M. (2014). The bioenergetic health index: A new concept in mitochondrial translational research. Clinical Science (London, England), 127(6), 367-373.
Chacko, B. K., Kramer, P. A., Ravi, S., Johnson, M. S., Hardy, R. W., Ballinger, S. W., & Darley-Usmar, V. M. (2013). Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Laboratory Investigation, 93(6), 690-700.
Chazaud, B. (2016). Inflammation during skeletal muscle regeneration and tissue remodeling: Application to exercise-induced muscle damage management. Immunology & Cell Biology, 94(2), 140-145.
Connolly, P. H., Caiozzo, V. J., Zaldivar, F., Nemet, D., Larson, J., Hung, S. P., Heck, J. D., Hatfield, G. W., & Cooper, D. M. (2004). Effects of exercise on gene expression in human peripheral blood mononuclear cells. Journal of Applied Physiology, 97(4), 1461-1469.
Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247-248.
Doerrier, C., & Gnaiger, E. (2014). High-resolution respirometry and phosphorylation control protocol with intact cells: ROUTINE, LEAK, ETS, ROX. Mitochondrial Physiology Network, 09(8), 1-8 Available from: http://wiki.oroboros.at/images/d/da/MiPNet08.09_CellRespiration.pdf.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
Finsterer, J. (2012). Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskeletal Disorders, 13(1), 218.
Fischer, C. P. (2006). Interleukin-6 in acute exercise and training: What is the biological relevance? Exercise Immunology Review, 12, 6-33.
Franchi, M. V., Reeves, N. D., & Narici, M. V. (2017). Skeletal muscle remodeling in response to eccentric vs. concentric loading: Morphological, molecular, and metabolic adaptations. Frontiers in Physiology, 4, 8.
Freidenreich, D. J., & Volek, J. S. (2012). Immune responses to resistance exercise. Exercise Immunology Review, 18(August), 8-41.
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25(12), 1822-1832. https://doi.org/10.1038/s41591-019-0675-0.
Gleeson, M., Bishop, N., & Walsh, N. (2013). Exercise immunology (pp. 64-317). Routledge, Taylor & Francis Group.
Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nature Reviews Immunology, 11(9), 607-610. https://doi.org/10.1038/nri3041.
Gnaiger, E. (2020). Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis (5th ed.), Bioenergetics Communications, pp. 23-40.
Goodman, J. M., Thomas, S. G., & Burr, J. (2011). Evidence-based risk assessment and recommendations for exercise testing and physical activity clearance in apparently healthy individuals. Applied Physiology, Nutrition and Metabolism, 36(SUPPL.1), 14-32.
Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood lactate measurements and analysis during exercise: A guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558-569.
Gould, J. M., & Weiser, J. N. (2001). Expression of C-reactive protein in the human respiratory tract. Infection and Immunity, 69(3), 1747-1754.
Haider, D. G., Leuchten, N., Schaller, G., Gouya, G., Kolodjaschna, J., Schmetterer, L., Kapiotis, S., & Wolzt, M. (2006). C-reactive protein is expressed and secreted by peripheral blood mononuclear cells. Clinical and Experimental Immunology, 146(3), 533-539.
Häkkinen, K., Pakarinen, A., Newton, R. U., & Kraemer, W. J. (1998). Acute hormone responses to heavy resistance lower and upper extremity exercise in young versus old men. European Journal of Applied Physiology, 77(4), 312-319.
Hedges, C. P., Woodhead, J. S. T., Wang, H. W., Mitchell, C. J., Cameron-Smith, D., Hickey, A. J. R., & Merry, T. L. (2019). Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. Journal of Applied Physiology, 126(2), 454-461.
Hill, B. G., Shiva, S., Ballinger, S., Zhang, J., & Darley-Usmar, V. M. (2019). Bioenergetics and translational metabolism: Implications for genetics, physiology and precision medicine. Biological Chemistry, 401(1), 3-29.
Hulmi, J. J., Isola, V., Suonpää, M., Järvinen, N. J., Kokkonen, M., Wennerström, A., Nyman, K., Perola, M., Ahtiainen, J. P., & Häkkinen, K. (2017). The effects of intensive weight reduction on body composition and serum hormones in female fitness competitors. Frontiers in Physiology, 10, 7.
Ihalainen, J., Walker, S., Paulsen, G., Häkkinen, K., Kraemer, W. J., Hämäläinen, M., Vuolteenaho, K., Moilanen, E., & Mero, A. A. (2014). Acute leukocyte, cytokine and adipocytokine responses to maximal and hypertrophic resistance exercise bouts. European Journal of Applied Physiology, 114(12), 2607-2616.
Izquierdo, M., Ibañez, J., Calbet, J. A. L., Navarro-Amezqueta, I., González-Izal, M., Idoate, F., Häkkinen, K., Kraemer, W. J., Palacios-Sarrasqueta, M., Almar, M., & Gorostiaga, E. M. (2009). Cytokine and hormone responses to resistance training. European Journal of Applied Physiology, 107(4), 397-409.
Kleiveland, C. R. Editors: K Verhoeckx, P Cotter, I López-Expósito, C Kleiveland, T Lea, A Mackie, T Requena, D Swiatecka, H Wichers (2015). Peripheral blood mononuclear cells. In The impact of food bioactives on health (pp. 161-167). Springer International Publishing.
Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35(4), 339-361.
Kramer, P. A., Ravi, S., Chacko, B., Johnson, M. S., & Darley-Usmar, V. M. (2014). A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers. Redox Biology, 2, 206-210.
Matomäki, P., Kainulainen, H., & Kyröläinen, H. (2018). Corrected whole blood biomarkers - the equation of Dill and Costill revisited. Physiological Reports, 6(12), e13749.
Petersen, A. M. W., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. Journal of Applied Physiology, 98(4), 1154-1162.
Pillon, N. J., Bilan, P. J., Fink, L. N., & Klip, A. (2013). Cross-talk between skeletal muscle and immune cells: Muscle-derived mediators and metabolic implications. American Journal of Physiology - Endocrinology and Metabolism, 304(5), E453-E465.
Robergs, R., Hutchinson, K., Hendee, S., Madden, S., & Siegler, J. (2005). Influence of pre-exercise acidosis and alkalosis on the kinetics of Acid-Base recovery following intense exercise. International Journal of Sport Nutrition and Exercise Metabolism, 15(1), 59-74.
Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(3), R502-R516.
Sakharov, D. A., Maltseva, D. V., Riabenko, E. A., Shkurnikov, M. U., Northoff, H., Tonevitsky, A. G., & Grigoriev, A. I. (2012). Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells. European Journal of Applied Physiology, 112(3), 963-972.
Souron, R., Nosaka, K., & Jubeau, M. (2018). Changes in central and peripheral neuromuscular fatigue indices after concentric versus eccentric contractions of the knee extensors. European Journal of Applied Physiology, 118(4), 805-816.
Sumbalova, Z., Garcia-Souza, L. F., Calabria, E., Volani, C., & Gnaiger, E. (2020). O2k-protocols: Isolation of peripheral blood mononuclear cells and platelets from human blood for HRR. Mitochondrial Physiology Network, 4(4), 1-15.
Tyrrell, D. J., Bharadwaj, M. S., Jorgensen, M. J., Register, T. C., & Molina, A. J. A. (2016). Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive biomarker of mitochondrial health. Redox Biology, 10, 65-77.
Walker, S., Peltonen, H., Avela, J., & Häkkinen, K. (2013). Neuromuscular fatigue in young and older men using constant or variable resistance. European Journal of Applied Physiology, 113(4), 1069-1079.
Willoughby, D. S., & Taylor, L. (2004). Effects of concentric and eccentric muscle actions on serum myostatin and follistatin-like related gene levels. Journal of Sports Science and Medicine, 3(4), 226-233.
Contributed Indexing:
Keywords: bioenergetics; mitochondria; resistance training; training volume; white blood cells
Substance Nomenclature:
33X04XA5AT (Lactic Acid)
9007-41-4 (C-Reactive Protein)
Entry Date(s):
Date Created: 20220719 Date Completed: 20220721 Latest Revision: 20231211
Update Code:
20240104
PubMed Central ID:
PMC9295128
DOI:
10.14814/phy2.15394
PMID:
35852047
Czasopismo naukowe
Little is known how acute exercise-induced inflammation and metabolic stress affect immune cell bioenergetics and the portion of its components. Therefore, we investigated acute effects of eccentric-only (E), concentric-only (C) and combined eccentric-concentric resistance exercise (E + C) bouts on cellular respiration of peripheral blood mononuclear cells (PBMCs). Twelve strength-trained young men performed bench press resistance exercises in randomized order. Venous blood samples were drawn at pre-, 5 min post- and 24 h post-exercise. Several PBMC respiration states were measured using high-resolution respirometry. Levels of leukocytes, interleukin 6 (IL-6), C-reactive protein (CRP), creatine kinase (CK), blood lactate and maximum voluntary isometric force were measured from the same time points. Effects of blood lactate and pH change on bioenergetics of PBMCs were investigated ex vivo. PBMC routine respiration (p = 0.017), free routine capacity (p = 0.025) and ET-capacity (p = 0.038) decreased immediately after E + C. E responded in opposite manner 5 min post-exercise compared to E + C (p = 0.013) and C (p = 0.032) in routine respiration, and to E + C in free routine activity (p = 0.013). E + C > C > E was observed for increased lactate levels and decreased isometric force that correlated with routine respiration (R = -0.369, p = 0.035; R = 0.352, p = 0.048). Lactate and pH change did not affect bioenergetics of PBMCs. Acute resistance exercise affected cellular respiration of PBMCs, with training volume and the amount of metabolic stress appear influential. Results suggest that acute inflammation response does not contribute to changes seen in cellular respiration, but the level of peripheral muscle fatigue and metabolic stress could be explaining factors.
(© 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies