Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Novel Cell Delivery System Exploiting Synergy between Fresh Titanium and Fibronectin.

Tytuł:
A Novel Cell Delivery System Exploiting Synergy between Fresh Titanium and Fibronectin.
Autorzy:
Hirota M; Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.; Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, MInami-ku, Yokohama 232-0024, Kanagawa, Japan.
Hori N; Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.
Sugita Y; Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.; Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, 1-1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan.
Ikeda T; Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.; Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
Park W; Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.; Department of Dentistry, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
Saruta J; Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.; Department of Education Planning, School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Kanagawa, Japan.
Ogawa T; Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.
Źródło:
Cells [Cells] 2022 Jul 10; Vol. 11 (14). Date of Electronic Publication: 2022 Jul 10.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI
MeSH Terms:
Fibronectins*/chemistry
Fibronectins*/metabolism
Tissue Engineering*/methods
Titanium*/chemistry
Animals ; Cell Adhesion/physiology ; Osteoblasts/metabolism ; Rats ; Surface Properties
References:
J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2279-87. (PMID: 22987777)
Int J Mol Sci. 2020 Jan 25;21(3):. (PMID: 31991761)
J Biomed Mater Res A. 2011 Dec 15;99(4):523-31. (PMID: 21913320)
Dent Mater. 2008 Dec;24(12):1686-93. (PMID: 18539323)
Theranostics. 2020 May 15;10(13):6035-6047. (PMID: 32483436)
J Dent Res. 2006 Jun;85(6):566-70. (PMID: 16723657)
Materials (Basel). 2021 Sep 23;14(19):. (PMID: 34639891)
Int J Mol Sci. 2020 Jan 23;21(3):. (PMID: 31979313)
Biomaterials. 2010 Nov;31(33):8674-83. (PMID: 20719378)
Implant Dent. 2018 Aug;27(4):405-414. (PMID: 29851661)
Bone. 2002 Jan;30(1):137-43. (PMID: 11792576)
J Dent Res. 2014 Jul;93(7):698-703. (PMID: 24868012)
Stem Cell Res Ther. 2010 May 04;1(2):10. (PMID: 20637059)
Biomed Res. 2016;37(1):1-11. (PMID: 26912135)
Int J Oral Maxillofac Implants. 2015 Jul-Aug;30(4):868-79. (PMID: 26252039)
Biomaterials. 2010 Apr;31(10):2717-27. (PMID: 20035996)
Materials (Basel). 2021 Sep 16;14(18):. (PMID: 34576562)
J Dent Res. 2009 Jul;88(7):663-7. (PMID: 19641155)
Carbohydr Polym. 2013 Feb 15;92(2):1262-79. (PMID: 23399155)
Int J Oral Maxillofac Implants. 2016 May-Jun;31(3):676-86. (PMID: 27183088)
Int J Mol Sci. 2021 Nov 17;22(22):. (PMID: 34830275)
Curr Opin Biotechnol. 2004 Oct;15(5):411-8. (PMID: 15464370)
J Biomed Mater Res A. 2008 Nov;87(2):380-91. (PMID: 18181115)
J Prosthet Dent. 2017 Sep;118(3):357-362. (PMID: 28222880)
J Biomed Mater Res A. 2016 May;104(5):1276-84. (PMID: 26826060)
Biomaterials. 2009 Sep;30(26):4268-76. (PMID: 19473697)
Bioact Mater. 2020 Nov 16;6(5):1491-1511. (PMID: 33294729)
Dent Mater. 2010 Apr;26(4):275-87. (PMID: 20006380)
Small. 2021 Mar;17(11):e2006596. (PMID: 33620759)
Materials (Basel). 2016 Feb 06;9(2):. (PMID: 28787899)
Curr Stem Cell Res Ther. 2012 Mar;7(2):122-6. (PMID: 22023632)
Int Orthop. 2013 Dec;37(12):2491-8. (PMID: 23948983)
Materials (Basel). 2011 Oct 11;4(10):1793-1804. (PMID: 28824108)
Tissue Eng Part A. 2009 Dec;15(12):3679-88. (PMID: 19397472)
Int J Oral Maxillofac Implants. 2016;31 Suppl:s43-99. (PMID: 27228254)
J Tissue Eng. 2018 Jan 17;9:2041731417752766. (PMID: 29375756)
Int J Mol Sci. 2021 Jun 24;22(13):. (PMID: 34202795)
Ann Transl Med. 2021 Aug;9(15):1259. (PMID: 34532396)
Implant Dent. 2013 Dec;22(6):666-75. (PMID: 24185466)
Materials (Basel). 2020 Dec 31;14(1):. (PMID: 33396339)
J Biomater Appl. 2016 Mar;30(8):1242-50. (PMID: 26656313)
Polymers (Basel). 2021 Aug 17;13(16):. (PMID: 34451293)
J Dent Res. 2006 Jun;85(6):560-5. (PMID: 16723656)
Int J Oral Maxillofac Implants. 2012 Jul-Aug;27(4):753-61. (PMID: 22848875)
Materials (Basel). 2020 Sep 07;13(18):. (PMID: 32906598)
Pediatr Res. 2008 May;63(5):492-6. (PMID: 18427293)
Implant Dent. 2012 Oct;21(5):415-21. (PMID: 22968574)
Open Orthop J. 2011;5 Suppl 2:289-95. (PMID: 21886695)
Biomaterials. 2009 Oct;30(29):5352-63. (PMID: 19595450)
J Biomed Mater Res A. 2006 Jun 1;77(3):478-86. (PMID: 16482547)
Acta Biomater. 2010 Dec;6(12):4578-88. (PMID: 20633705)
Biomed Res. 2015;36(1):55-62. (PMID: 25749151)
Int J Oral Maxillofac Implants. 2017 Jan/Feb;32(1):52-62. (PMID: 28095515)
Tissue Cell. 2021 Aug;71:101515. (PMID: 33657504)
Acta Biomater. 2018 Jan;65:1-20. (PMID: 29128537)
Biomaterials. 2016 Nov;108:177-86. (PMID: 27639113)
J Chin Med Assoc. 2008 Feb;71(2):59-61. (PMID: 18290248)
Stem Cells Cloning. 2015 Feb 10;8:39-48. (PMID: 25709479)
J Biomed Mater Res A. 2005 Mar 1;72(3):296-305. (PMID: 15654712)
J Biomed Mater Res A. 2004 Nov 1;71(2):308-15. (PMID: 15372469)
Nanomedicine. 2018 Feb;14(2):521-531. (PMID: 29157978)
Nanomedicine (Lond). 2020 Aug;15(20):1995-2017. (PMID: 32812486)
Biomaterials. 2010 Jun;31(18):4818-28. (PMID: 20350765)
J Biomed Mater Res A. 2008 Jan;84(1):108-16. (PMID: 17600332)
Int J Oral Maxillofac Implants. 2010 Mar-Apr;25(2):287-94. (PMID: 20369086)
Int J Mol Sci. 2018 Oct 25;19(11):. (PMID: 30366398)
Int J Oral Maxillofac Implants. 2013 Nov-Dec;28(6):1589-601. (PMID: 24278928)
Int J Mol Sci. 2021 Oct 29;22(21):. (PMID: 34769175)
J Dent Res. 2007 Feb;86(2):147-52. (PMID: 17251514)
Biomaterials. 2011 Jul;32(19):4358-68. (PMID: 21421270)
Biomaterials. 2000 Dec;21(24):2589-98. (PMID: 11071608)
Int J Oral Maxillofac Implants. 2013 Sep-Oct;28(5):1261-71. (PMID: 24066316)
J Oral Maxillofac Surg. 2014 Sep;72(9):1691-702. (PMID: 25109583)
Biomaterials. 2010 May;31(14):3827-39. (PMID: 20153521)
J Dent Res. 2009 Sep;88(9):812-6. (PMID: 19767577)
Adv Drug Deliv Rev. 2021 Jul;174:613-627. (PMID: 34015421)
Polymers (Basel). 2021 Feb 17;13(4):. (PMID: 33671329)
Regen Med. 2006 Jul;1(4):589-604. (PMID: 17465852)
Biomaterials. 2010 Mar;31(7):1546-57. (PMID: 19962757)
Biomaterials. 2016 Jan;75:223-236. (PMID: 26513415)
Clin Oral Implants Res. 2008 Feb;19(2):173-81. (PMID: 18184341)
Sensors (Basel). 2021 Nov 10;21(22):. (PMID: 34833553)
Int J Mol Sci. 2020 Feb 12;21(4):. (PMID: 32059603)
J Dent Res. 2008 Apr;87(4):372-7. (PMID: 18362322)
J Dent Res. 2005 Jun;84(6):515-20. (PMID: 15914587)
Regen Med. 2018 Mar 19;:. (PMID: 29553875)
Int J Oral Maxillofac Implants. 2014 Nov-Dec;29(6):1293-300. (PMID: 25397793)
Tissue Eng. 2005 May-Jun;11(5-6):787-802. (PMID: 15998219)
J Bone Miner Res. 2005 Nov;20(11):2002-16. (PMID: 16234974)
J Mater Chem B. 2020 Aug 5;8(30):6378-6389. (PMID: 32633309)
Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:165-177. (PMID: 30948050)
J Biomed Mater Res A. 2005 Aug 1;74(2):164-70. (PMID: 15962269)
Adv Exp Med Biol. 2018;1107:113-127. (PMID: 29498025)
Langmuir. 2005 Apr 26;21(9):4096-107. (PMID: 15835980)
Acta Biomater. 2014 Apr;10(4):1646-62. (PMID: 24334143)
Molecules. 2021 Nov 10;26(22):. (PMID: 34833885)
J Struct Biol. 2010 Apr;170(1):50-9. (PMID: 20109553)
Biomaterials. 2009 Mar;30(7):1273-80. (PMID: 19095298)
World J Stem Cells. 2020 Feb 26;12(2):110-122. (PMID: 32184936)
Acta Biomater. 2010 Oct;6(10):4175-80. (PMID: 20466081)
Injury. 2011 Jun;42(6):562-8. (PMID: 21489533)
Int J Oral Maxillofac Implants. 2010 Jan-Feb;25(1):49-62. (PMID: 20209187)
Biomaterials. 2009 Jul;30(20):3378-89. (PMID: 19303139)
Int J Oral Maxillofac Implants. 2016 Jan-Feb;31(1):73-86. (PMID: 26800164)
Horm Metab Res. 2016 Nov;48(11):700-713. (PMID: 27871114)
Biomaterials. 2015 Oct;67:84-92. (PMID: 26210175)
Adv Exp Med Biol. 2018;1064:109-121. (PMID: 30471029)
J Biomater Appl. 2015 May;29(10):1372-84. (PMID: 25604095)
Biomaterials. 2019 May;203:96-110. (PMID: 29980291)
J Control Release. 2021 Feb 10;330:565-574. (PMID: 33388339)
J Mater Sci Mater Med. 2021 Aug 11;32(8):93. (PMID: 34379204)
Biomaterials. 2007 Jul;28(20):3074-82. (PMID: 17428532)
Int J Nanomedicine. 2011;6:1327-41. (PMID: 21760728)
Stem Cells Int. 2016;2016:6180487. (PMID: 26880976)
Int J Oral Maxillofac Implants. 2003 Mar-Apr;18(2):200-10. (PMID: 12705297)
J Biomed Sci. 2009 Nov 25;16:108. (PMID: 19939265)
Stem Cells Int. 2017;2017:2374161. (PMID: 29230248)
Cells. 2021 Sep 05;10(9):. (PMID: 34571972)
Int J Mol Sci. 2019 Aug 18;20(16):. (PMID: 31426563)
Stem Cells Int. 2019 Nov 6;2019:3673857. (PMID: 31781238)
Cell Prolif. 2017 Apr;50(2):. (PMID: 27905670)
Drug Metab Rev. 2015;47(4):431-54. (PMID: 26651522)
J Dent Res. 2000 Nov;79(11):1857-63. (PMID: 11145355)
J Biomed Mater Res A. 2014 Oct;102(10):3618-30. (PMID: 24248891)
Mater Sci Eng C Mater Biol Appl. 2021 Feb;121:111846. (PMID: 33579509)
J Biomater Appl. 2014 Apr;28(8):1200-12. (PMID: 23985537)
Biomaterials. 2009 Feb;30(6):1015-25. (PMID: 19042016)
Biomolecules. 2019 Sep 10;9(9):. (PMID: 31509976)
Int J Mol Sci. 2016 Nov 25;17(12):. (PMID: 27898014)
J Biol Eng. 2018 Dec 27;12:36. (PMID: 30603044)
Stem Cells Int. 2019 Dec 30;2019:6279721. (PMID: 32082383)
Int J Oral Maxillofac Implants. 2019 Sep 18;35(1):79–90. (PMID: 31532823)
Cells. 2021 Apr 21;10(5):. (PMID: 33919377)
J Biomed Mater Res A. 2010 Jan;92(1):285-96. (PMID: 19189384)
Int J Mol Sci. 2020 Jun 12;21(12):. (PMID: 32545509)
Histol Histopathol. 2018 Jul;33(7):619-627. (PMID: 29094748)
Int J Oral Maxillofac Implants. 2014 Jan-Feb;29(1):e95-102. (PMID: 24451893)
Contributed Indexing:
Keywords: biological aging of titanium; bone engineering; implants; osseointegration; osteoblasts
Substance Nomenclature:
0 (Fibronectins)
D1JT611TNE (Titanium)
Entry Date(s):
Date Created: 20220727 Date Completed: 20220728 Latest Revision: 20221106
Update Code:
20240105
PubMed Central ID:
PMC9317518
DOI:
10.3390/cells11142158
PMID:
35883601
Czasopismo naukowe
Delivering and retaining cells in areas of interest is an ongoing challenge in tissue engineering. Here we introduce a novel approach to fabricate osteoblast-loaded titanium suitable for cell delivery for bone integration, regeneration, and engineering. We hypothesized that titanium age influences the efficiency of protein adsorption and cell loading onto titanium surfaces. Fresh (newly machined) and 1-month-old (aged) commercial grade 4 titanium disks were prepared. Fresh titanium surfaces were hydrophilic, whereas aged surfaces were hydrophobic. Twice the amount of type 1 collagen and fibronectin adsorbed to fresh titanium surfaces than aged titanium surfaces after a short incubation period of three hours, and 2.5-times more fibronectin than collagen adsorbed regardless of titanium age. Rat bone marrow-derived osteoblasts were incubated on protein-adsorbed titanium surfaces for three hours, and osteoblast loading was most efficient on fresh titanium adsorbed with fibronectin. The number of osteoblasts loaded using this synergy between fresh titanium and fibronectin was nine times greater than that on aged titanium with no protein adsorption. The loaded cells were confirmed to be firmly attached and functional. The number of loaded cells was strongly correlated with the amount of protein adsorbed regardless of the protein type, with fibronectin simply more efficiently adsorbed on titanium surfaces than collagen. The role of surface hydrophilicity of fresh titanium surfaces in increasing protein adsorption or cell loading was unclear. The hydrophilicity of protein-adsorbed titanium increased with the amount of protein but was not the primary determinant of cell loading. In conclusion, the osteoblast loading efficiency was dependent on the age of the titanium and the amount of protein adsorption. In addition, the efficiency of protein adsorption was specific to the protein, with fibronectin being much more efficient than collagen. This is a novel strategy to effectively deliver osteoblasts ex vivo and in vivo using titanium as a vehicle.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies