Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Method for In Situ Reverse Genetic Analysis of Proteins Involved mtDNA Replication.

Tytuł:
A Method for In Situ Reverse Genetic Analysis of Proteins Involved mtDNA Replication.
Autorzy:
Kozhukhar N; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
Spadafora D; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
Rodriguez YAR; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
Alexeyev MF; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
Źródło:
Cells [Cells] 2022 Jul 11; Vol. 11 (14). Date of Electronic Publication: 2022 Jul 11.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI
MeSH Terms:
DNA-Binding Proteins*/genetics
DNA-Binding Proteins*/metabolism
Transcription Factors*/genetics
Transcription Factors*/metabolism
DNA, Mitochondrial/genetics ; Humans ; Mitochondrial Proteins/genetics ; Mitochondrial Proteins/metabolism ; Reverse Genetics
References:
Mol Cell Biol. 1988 Aug;8(8):3496-509. (PMID: 3211148)
Cell. 1983 Aug;34(1):151-9. (PMID: 6883508)
J Biol Chem. 2003 Aug 15;278(33):31149-58. (PMID: 12759347)
PLoS One. 2018 Mar 28;13(3):e0194887. (PMID: 29590189)
Exp Mol Med. 2015 Mar 13;47:e150. (PMID: 25766619)
Mol Genet Metab. 2016 Sep;119(1-2):91-9. (PMID: 27448789)
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16510-5. (PMID: 23012404)
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6513-8. (PMID: 22493245)
Life (Basel). 2021 Dec 24;12(1):. (PMID: 35054416)
PLoS One. 2020 Jul 10;15(7):e0235856. (PMID: 32649732)
Cell Metab. 2015 Sep 1;22(3):485-98. (PMID: 26299452)
Hum Mol Genet. 2013 Mar 1;22(5):1017-25. (PMID: 23197651)
Mitochondrion. 2020 Jul;53:133-139. (PMID: 32470614)
Transcription. 2011 Mar;2(2):55-59. (PMID: 21468229)
Biochem Biophys Res Commun. 2014 Jul 18;450(1):166-71. (PMID: 24875355)
Mol Biol Cell. 2001 Apr;12(4):821-30. (PMID: 11294889)
Hum Mol Genet. 2005 Jul 1;14(13):1775-83. (PMID: 15888483)
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3136-41. (PMID: 14978272)
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12133-8. (PMID: 20562347)
Cell. 1987 Jul 17;50(2):247-58. (PMID: 3594571)
Mol Cell Biol. 2004 Nov;24(22):9823-34. (PMID: 15509786)
Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9131-5. (PMID: 9256447)
Science. 2015 Nov 27;350(6264):1092-6. (PMID: 26472760)
Science. 2015 Nov 27;350(6264):1096-101. (PMID: 26472758)
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6508-12. (PMID: 22454497)
Annu Rev Genet. 2005;39:359-407. (PMID: 16285865)
Gene. 1989 Apr 15;77(1):51-9. (PMID: 2744487)
Nucleic Acids Res. 2010 Oct;38(19):6577-88. (PMID: 20566479)
Cell Metab. 2013 Apr 2;17(4):618-26. (PMID: 23562081)
J Biol Chem. 2013 Sep 13;288(37):26594-605. (PMID: 23884459)
Cell. 2005 Dec 29;123(7):1227-40. (PMID: 16377564)
DNA Repair (Amst). 2015 Dec;36:122-136. (PMID: 26411874)
FEBS J. 2007 Dec;274(24):6488-99. (PMID: 18028422)
Front Biosci (Landmark Ed). 2017 Jan 1;22(5):835-853. (PMID: 27814650)
Biochim Biophys Acta Mol Cell Res. 2022 Jan;1869(1):119167. (PMID: 34744028)
Cardiovasc Res. 2011 Apr 1;90(1):57-67. (PMID: 21113058)
Hum Genet. 2021 Dec;140(12):1733-1751. (PMID: 34647195)
PLoS One. 2019 Mar 7;14(3):e0213376. (PMID: 30845180)
Genome Med. 2020 Sep 28;12(1):84. (PMID: 32988399)
J Genet Genomics. 2009 Mar;36(3):125-31. (PMID: 19302968)
Biochim Biophys Acta. 2009 Dec;1792(12):1103-8. (PMID: 19596444)
Annu Rev Biochem. 2016 Jun 2;85:133-60. (PMID: 27023847)
Nat Genet. 1998 Mar;18(3):231-6. (PMID: 9500544)
Sci Adv. 2016 Aug 05;2(8):e1600963. (PMID: 27532055)
Front Biosci (Landmark Ed). 2014 Jan 01;19(5):777-82. (PMID: 24389221)
Nat Biotechnol. 2016 Jun;34(6):634-6. (PMID: 27159373)
Curr Protoc Cell Biol. 2018 Mar;78(1):20.11.1-20.11.14. (PMID: 30040188)
Science. 2013 Feb 15;339(6121):819-23. (PMID: 23287718)
PLoS One. 2015 Apr 24;10(4):e0124633. (PMID: 25909470)
Curr Pharm Des. 2015;21(9):1158-63. (PMID: 25312735)
Stem Cells. 2011 Sep;29(9):1459-68. (PMID: 21780252)
Science. 2020 Jun 19;368(6497):1371-1376. (PMID: 32439659)
Mitochondrion. 2021 Nov;61:102-113. (PMID: 34606994)
Nat Metab. 2019 Dec;1(12):1209-1218. (PMID: 32395698)
Nat Rev Cancer. 2012 Oct;12(10):685-98. (PMID: 23001348)
Nat Methods. 2012 Oct;9(10):973-5. (PMID: 22941364)
Proc Natl Acad Sci U S A. 1982 Dec;79(23):7195-9. (PMID: 6185947)
Grant Information:
S10 OD025089 United States OD NIH HHS; R01 OD010944 United States OD NIH HHS; P01 HL066299 United States HL NHLBI NIH HHS
Contributed Indexing:
Keywords: GeneSwap approach; TFAM; TFAM chimeras; TFAM knockout; TFAM-mtDNA evolutionary co-adaptation; mtDNA instability; mtDNA metabolism; mtDNA replication; mtDNA transcription
Substance Nomenclature:
0 (DNA, Mitochondrial)
0 (DNA-Binding Proteins)
0 (Mitochondrial Proteins)
0 (Transcription Factors)
Entry Date(s):
Date Created: 20220727 Date Completed: 20220728 Latest Revision: 20221106
Update Code:
20240105
PubMed Central ID:
PMC9316749
DOI:
10.3390/cells11142168
PMID:
35883613
Czasopismo naukowe
The unavailability of tractable reverse genetic analysis approaches represents an obstacle to a better understanding of mitochondrial DNA replication. Here, we used CRISPR-Cas9 mediated gene editing to establish the conditional viability of knockouts in the key proteins involved in mtDNA replication. This observation prompted us to develop a set of tools for reverse genetic analysis in situ, which we called the GeneSwap approach. The technique was validated by identifying 730 amino acid (aa) substitutions in the mature human TFAM that are conditionally permissive for mtDNA replication. We established that HMG domains of TFAM are functionally independent, which opens opportunities for engineering chimeric TFAMs with customized properties for studies on mtDNA replication, mitochondrial transcription, and respiratory chain function. Finally, we present evidence that the HMG2 domain plays the leading role in TFAM species-specificity, thus indicating a potential pathway for TFAM-mtDNA evolutionary co-adaptations.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies