Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

PFKFB3-mediated glycometabolism reprogramming modulates endothelial differentiation and angiogenic capacity of placenta-derived mesenchymal stem cells.

Tytuł:
PFKFB3-mediated glycometabolism reprogramming modulates endothelial differentiation and angiogenic capacity of placenta-derived mesenchymal stem cells.
Autorzy:
Zhang Y; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
Zhong Y; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
Liu W; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
Zheng F; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
Zhao Y; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
Zou L; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
Liu X; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China. .
Źródło:
Stem cell research & therapy [Stem Cell Res Ther] 2022 Aug 02; Vol. 13 (1), pp. 391. Date of Electronic Publication: 2022 Aug 02.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central
MeSH Terms:
Mesenchymal Stem Cells*/metabolism
Cell Differentiation ; Cells, Cultured ; Glycolysis ; Humans ; Neovascularization, Pathologic/metabolism ; Phosphofructokinase-2/genetics ; Phosphofructokinase-2/metabolism
References:
Hum Reprod Update. 2018 Nov 1;24(6):750-760. (PMID: 30257012)
Stem Cells Dev. 2011 Apr;20(4):635-46. (PMID: 21047215)
FEBS Lett. 1999 Jan 29;443(3):326-30. (PMID: 10025957)
Semin Cell Dev Biol. 2016 Apr;52:119-31. (PMID: 26868759)
Biochem Biophys Res Commun. 1999 Apr 2;257(1):177-81. (PMID: 10092529)
Placenta. 2017 Jan;49:64-67. (PMID: 28012456)
Oxid Med Cell Longev. 2022 Jun 14;2022:7202837. (PMID: 35757501)
Placenta. 2020 Sep 15;99:70-77. (PMID: 32758718)
FEBS Open Bio. 2017 Oct 16;7(11):1722-1736. (PMID: 29123981)
Tissue Eng Part C Methods. 2013 Jan;19(1):68-79. (PMID: 22731854)
Stem Cells. 2004;22(3):377-84. (PMID: 15153614)
Cell. 2013 Aug 1;154(3):651-63. (PMID: 23911327)
Stem Cells Dev. 2016 Jan 15;25(2):114-22. (PMID: 26487485)
Cell Transplant. 2017 Jan 24;26(1):45-61. (PMID: 27501782)
Apoptosis. 2020 Jun;25(5-6):321-340. (PMID: 31993850)
J Vasc Surg. 2016 Sep;64(3):746-756.e1. (PMID: 26054585)
Am J Pathol. 1994 Nov;145(5):1023-9. (PMID: 7526691)
Am J Physiol Renal Physiol. 2017 Mar 1;312(3):F533-F542. (PMID: 27974320)
Stem Cells Dev. 2008 Dec;17(6):1095-107. (PMID: 19006451)
Stem Cells Dev. 2019 Nov 15;28(22):1498-1513. (PMID: 31530214)
J Cell Mol Med. 2016 Jan;20(1):29-37. (PMID: 26282458)
J Transl Med. 2017 Feb 24;15(1):49. (PMID: 28235425)
Am J Respir Crit Care Med. 2015 Dec 15;192(12):1462-74. (PMID: 26284610)
Aging (Albany NY). 2019 Feb 20;11(4):1110-1128. (PMID: 30786262)
Stem Cell Res Ther. 2021 Jun 29;12(1):368. (PMID: 34187557)
Cytotherapy. 2009;11(4):427-34. (PMID: 19526389)
EMBO J. 2015 Jan 13;34(2):138-53. (PMID: 25476451)
Sci Rep. 2015 Oct 28;5:15784. (PMID: 26507009)
Biol Blood Marrow Transplant. 2005 May;11(5):321-34. (PMID: 15846285)
Stem Cells Dev. 2021 Oct 1;30(19):991-1002. (PMID: 34470469)
Semin Cell Dev Biol. 2021 Dec;120:32-43. (PMID: 34154883)
Differentiation. 2017 May - Jun;95:21-30. (PMID: 28135608)
Placenta. 2021 Mar;106:67-78. (PMID: 33684599)
Theranostics. 2019 May 31;9(14):4084-4100. (PMID: 31281533)
Am J Respir Crit Care Med. 2021 Oct 15;204(8):954-966. (PMID: 34280322)
Mol Med Rep. 2019 Feb;19(2):783-791. (PMID: 30535469)
Eur J Vasc Endovasc Surg. 2018 Feb;55(2):257-265. (PMID: 29208350)
Stem Cells Dev. 2015 Sep 1;24(17):1957-71. (PMID: 26134242)
Eur J Vasc Endovasc Surg. 2020 May;59(5):834-842. (PMID: 31874808)
BMC Dev Biol. 2007 Feb 21;7:11. (PMID: 17313666)
Cell Metab. 2019 Sep 3;30(3):414-433. (PMID: 31484054)
Acta Histochem. 2017 Mar;119(2):113-121. (PMID: 28017358)
Stem Cell Res Ther. 2022 Feb 22;13(1):77. (PMID: 35193674)
J Mater Chem B. 2021 Apr 21;9(15):3357-3370. (PMID: 33881442)
Stem Cells. 2008 Feb;26(2):300-11. (PMID: 17975221)
Front Pharmacol. 2022 Jun 01;13:896531. (PMID: 35721156)
Exp Mol Pathol. 2009 Jun;86(3):174-9. (PMID: 19454274)
Development. 2013 Jun;140(12):2535-47. (PMID: 23715547)
BMC Med. 2012 Jun 06;10:56. (PMID: 22673529)
Acta Anat (Basel). 1989;136(3):190-203. (PMID: 2481376)
Mol Ther Nucleic Acids. 2021 Jan 16;23:897-907. (PMID: 33614238)
J Biochem. 1996 Mar;119(3):506-11. (PMID: 8830046)
PLoS One. 2012;7(10):e46842. (PMID: 23056481)
J Vis Exp. 2016 Jun 06;(112):. (PMID: 27340821)
Biochem J. 2004 Aug 1;381(Pt 3):561-79. (PMID: 15170386)
J Cell Sci. 2012 Dec 1;125(Pt 23):5597-608. (PMID: 23420198)
Pharmacol Res. 2018 Jun;132:90-98. (PMID: 29665425)
Small. 2022 Jul;18(30):e2201056. (PMID: 35652171)
Cell Mol Life Sci. 2020 Jan;77(2):253-265. (PMID: 31468060)
Biol Reprod. 2015 Oct;93(4):103. (PMID: 26353894)
Adv Exp Med Biol. 2017;982:371-406. (PMID: 28551799)
Front Bioeng Biotechnol. 2022 Mar 08;10:794037. (PMID: 35350177)
Placenta. 2014 Feb;35(2):77-84. (PMID: 24406265)
Annu Rev Cell Dev Biol. 2001;17:387-403. (PMID: 11687494)
Am J Reprod Immunol. 2016 Oct;76(4):307-17. (PMID: 27553867)
Biochem J. 2012 Jun 15;444(3):375-82. (PMID: 22642576)
Cancer Cell. 2016 Dec 12;30(6):968-985. (PMID: 27866851)
PLoS One. 2011;6(9):e23965. (PMID: 21931630)
Stem Cell Res Ther. 2021 Feb 17;12(1):140. (PMID: 33597020)
Elife. 2016 Jun 10;5:. (PMID: 27282387)
Eur J Pharmacol. 2020 Jun 5;876:173051. (PMID: 32145325)
Stem Cells Dev. 2014 Feb 15;23(4):333-51. (PMID: 24134622)
Oxid Med Cell Longev. 2021 Nov 11;2021:1806344. (PMID: 34804360)
Pharmacol Ther. 2015 Jul;151:107-20. (PMID: 25827580)
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4872-7. (PMID: 20194780)
PLoS One. 2012;7(9):e46483. (PMID: 23029528)
Int Immunopharmacol. 2012 Jun;13(2):219-24. (PMID: 22487126)
Stem Cell Reports. 2016 Feb 9;6(2):200-12. (PMID: 26777058)
Placenta. 2010 Mar;31(3):203-12. (PMID: 20060164)
Cell Mol Life Sci. 2015 Apr;72(8):1537-57. (PMID: 25552244)
Cell Stem Cell. 2011 Oct 4;9(4):298-310. (PMID: 21982230)
PLoS One. 2013 Oct 18;8(10):e77077. (PMID: 24204740)
Biochim Biophys Acta. 2010 Mar;1800(3):257-63. (PMID: 19747960)
Differentiation. 2012 Jun;83(5):260-70. (PMID: 22466671)
Contributed Indexing:
Keywords: Angiogenesis; Endothelial differentiation; Glycolysis; Glycometabolism reprogramming; Mesenchymal stem cells; PFKFB3; Placenta
Substance Nomenclature:
EC 2.7.1.105 (PFKFB3 protein, human)
EC 2.7.1.105 (Phosphofructokinase-2)
Entry Date(s):
Date Created: 20220802 Date Completed: 20220804 Latest Revision: 20220830
Update Code:
20240105
PubMed Central ID:
PMC9344722
DOI:
10.1186/s13287-022-03089-3
PMID:
35918720
Czasopismo naukowe
Background: Mesenchymal stem cells (MSCs) have a great potential ability for endothelial differentiation, contributing to an effective means of therapeutic angiogenesis. Placenta-derived mesenchymal stem cells (PMSCs) have gradually attracted attention, while the endothelial differentiation has not been fully evaluated in PMSCs. Metabolism homeostasis plays an important role in stem cell differentiation, but less is known about the glycometabolic reprogramming during the PMSCs endothelial differentiation. Hence, it is critical to investigate the potential role of glycometabolism reprogramming in mediating PMSCs endothelial differentiation.
Methods: Dil-Ac-LDL uptake assay, flow cytometry, and immunofluorescence were all to verify the endothelial differentiation in PMSCs. Seahorse XF Extracellular Flux Analyzers, Mito-tracker red staining, Mitochondrial membrane potential (MMP), lactate secretion assay, and transcriptome approach were to assess the variation of mitochondrial respiration and glycolysis during the PMSCs endothelial differentiation. Glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) was considered a potential modulator for endothelial differentiation in PMSCs by small interfering RNA. Furthermore, transwell, in vitro Matrigel tube formation, and in vivo Matrigel plug assays were performed to evaluate the effect of PFKFB3-induced glycolysis on angiogenic capacities in this process.
Results: PMSCs possessed the superior potential of endothelial differentiation, in which the glycometabolic preference for glycolysis was confirmed. Moreover, PFKFB3-induced glycometabolism reprogramming could modulate the endothelial differentiation and angiogenic abilities of PMSCs.
Conclusions: Our results revealed that PFKFB3-mediated glycolysis is important for endothelial differentiation and angiogenesis in PMSCs. Our understanding of cellular glycometabolism and its regulatory effects on endothelial differentiation may propose and improve PMSCs as a putative strategy for clinical therapeutic angiogenesis.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies