Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Intraspecies variation of the mitochondrial genome: An evaluation for phylogenetic approaches based on the conventional choices of genes and segments on mitogenome.

Tytuł:
Intraspecies variation of the mitochondrial genome: An evaluation for phylogenetic approaches based on the conventional choices of genes and segments on mitogenome.
Autorzy:
Morón-López J; Institute of Plant Science and Resources, Okayama University, Kurashiki city, Okayama, Japan.
Vergara K; Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda, Osorno, Chile.
Sato M; Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
Gajardo G; Laboratorio de Genética, Acuicultura & Biodiversidad, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda, Osorno, Chile.
Ueki S; Institute of Plant Science and Resources, Okayama University, Kurashiki city, Okayama, Japan.
Źródło:
PloS one [PLoS One] 2022 Aug 18; Vol. 17 (8), pp. e0273330. Date of Electronic Publication: 2022 Aug 18 (Print Publication: 2022).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Genome, Mitochondrial*/genetics
Phylogeny*
Animals ; DNA, Mitochondrial/genetics ; Electron Transport Complex IV/genetics ; Genes, Mitochondrial ; Mammals/genetics
References:
Genome Biol Evol. 2016 Sep 26;8(9):2896-2913. (PMID: 27557826)
Bioinformatics. 2019 Feb 1;35(3):526-528. (PMID: 30016406)
Protist. 2007 Apr;158(2):239-45. (PMID: 17291829)
Gene. 2002 Mar 6;286(1):3-12. (PMID: 11943454)
Mol Ecol Resour. 2017 Nov;17(6):1385-1392. (PMID: 28374552)
Mol Biol Evol. 2015 May;32(5):1115-31. (PMID: 25660376)
Trends Genet. 2008 Jul;24(7):328-35. (PMID: 18514360)
Anim Genet. 2017 Apr;48(2):217-220. (PMID: 27775167)
BMC Genomics. 2015 Jun 11;16:451. (PMID: 26062918)
Science. 2008 Jun 20;320(5883):1632-5. (PMID: 18566285)
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
Mol Phylogenet Evol. 2018 Dec;129:60-69. (PMID: 30102976)
Mol Biol Evol. 2002 Mar;19(3):310-9. (PMID: 11861890)
Microbiol Spectr. 2015 Feb;3(1):MDNA3-0050-2014. (PMID: 26104554)
Mol Ecol. 2016 Jan;25(1):67-78. (PMID: 26578312)
Nucleic Acids Res. 1997 Jan 15;25(2):438-46. (PMID: 9016576)
Methods Mol Biol. 2014;1079:155-70. (PMID: 24170401)
Annu Rev Plant Biol. 2017 Apr 28;68:225-252. (PMID: 28226235)
Bioessays. 2009 Feb;31(2):237-45. (PMID: 19204978)
Exp Physiol. 2003 Jan;88(1):41-56. (PMID: 12525854)
Biol Lett. 2017 Jul;13(7):. (PMID: 28679695)
Front Microbiol. 2020 May 25;11:1002. (PMID: 32528440)
Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(2):1383-4. (PMID: 25103439)
Genome Biol Evol. 2015 Jul 01;7(8):2102-16. (PMID: 26139831)
PLoS One. 2019 May 28;14(5):e0216675. (PMID: 31136587)
Biochim Biophys Acta. 2004 Dec 6;1659(2-3):212-20. (PMID: 15576054)
Gene. 1997 Dec 31;205(1-2):125-40. (PMID: 9461386)
Mol Biol Evol. 2013 Jul;30(7):1644-52. (PMID: 23619144)
BMC Biol. 2007 Sep 27;5:41. (PMID: 17897476)
BMC Genomics. 2008 Mar 04;9:119. (PMID: 18318906)
BMC Bioinformatics. 2008 Sep 16;9:376. (PMID: 18793444)
Nucleic Acids Res. 2015 Jul 1;43(W1):W7-14. (PMID: 25883146)
Mol Biol Evol. 2013 Mar;30(3):642-53. (PMID: 23144040)
Curr Opin Microbiol. 2014 Aug;20:49-54. (PMID: 24906191)
Mol Biol Evol. 2014 Apr;31(4):872-88. (PMID: 24425782)
Anim Genet. 2005 Oct;36(5):367-75. (PMID: 16167978)
Theor Appl Genet. 1992 Nov;85(2-3):205-12. (PMID: 24197306)
BMC Evol Biol. 2007 Sep 24;7:172. (PMID: 17892581)
J Evol Biol. 2021 May;34(5):757-766. (PMID: 33644926)
Genome Biol Evol. 2012;4(1):59-72. (PMID: 22113794)
Nat Microbiol. 2020 Jan;5(1):154-165. (PMID: 31768028)
Trends Genet. 2006 Jun;22(6):339-45. (PMID: 16678300)
Syst Biol. 2012 May;61(3):539-42. (PMID: 22357727)
Biochimie. 2014 May;100:107-20. (PMID: 24075874)
Genome Biol Evol. 2013;5(2):418-38. (PMID: 23335123)
Mol Biol Evol. 2015 Jan;32(1):268-74. (PMID: 25371430)
Mol Biol Evol. 2012 Apr;29(4):1125-39. (PMID: 22049066)
Parasitol Res. 2021 Jun;120(6):2065-2075. (PMID: 34031714)
J Phycol. 2019 Aug;55(4):858-867. (PMID: 31032911)
PLoS One. 2017 Oct 3;12(10):e0185545. (PMID: 28972995)
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10177-84. (PMID: 25814499)
Genome Biol Evol. 2014 Feb;6(2):451-65. (PMID: 24504088)
PLoS Biol. 2012 Jan;10(1):e1001241. (PMID: 22272183)
Mol Biol Evol. 2011 Jan;28(1):615-23. (PMID: 20802239)
PLoS One. 2014 Apr 08;9(4):e93828. (PMID: 24714198)
Biol Lett. 2017 Apr;13(4):. (PMID: 28404821)
Science. 1999 Mar 5;283(5407):1476-81. (PMID: 10066161)
Substance Nomenclature:
0 (DNA, Mitochondrial)
EC 1.9.3.1 (Electron Transport Complex IV)
Entry Date(s):
Date Created: 20220818 Date Completed: 20220822 Latest Revision: 20220908
Update Code:
20240105
PubMed Central ID:
PMC9387813
DOI:
10.1371/journal.pone.0273330
PMID:
35980990
Czasopismo naukowe
Intraspecies nucleotide sequence variation is a key to understanding the evolutionary history of a species, such as the geographic distribution and population structure. To date, numerous phylogenetic and population genetics studies have been conducted based on the sequences of a gene or an intergenic region on the mitochondrial genome (mtDNA), such as cytochrome c oxidase subunits or the D-loop. To evaluate the credibility of the usage of such 'classic' markers, we compared the phylogenetic inferences based on the analyses of the partial and entire mtDNA sequences. Importantly, the phylogenetic reconstruction based on the short marker sequences did not necessarily reproduce the tree topologies based on the analyses of the entire mtDNA. In addition, analyses on the datasets of various organisms revealed that the analyses based on the classic markers yielded phylogenetic trees with poor confidence in all tested cases compared to the results based on full-length mtDNA. These results demonstrated that phylogenetic analyses based on complete mtDNA sequences yield more insightful results compared to those based on mitochondrial genes and segments. To ameliorate the shortcomings of the classic markers, we identified a segment of mtDNA that may be used as an 'approximate marker' to closely reproduce the phylogenetic inference obtained from the entire mtDNA in the case of mammalian species, which can be utilized to design amplicon-seq-based studies. Our study demonstrates the importance of the choice of mitochondrial markers for phylogenetic analyses and proposes a novel approach to choosing appropriate markers for mammalian mtDNA that reproduces the phylogenetic inferences obtained from full-length mtDNA.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies