Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The evolutionary drivers of primate scleral coloration.

Tytuł:
The evolutionary drivers of primate scleral coloration.
Autorzy:
Mearing AS; Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, UK. .
Burkart JM; Department of Anthropology, University of Zurich, 8057, Zurich, Switzerland.
Dunn J; Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, UK.; School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK.; Department of Cognitive Biology, University of Vienna, 1090, Vienna, Austria.
Street SE; Department of Anthropology, University of Durham, Durham, DH1 3LE, UK.
Koops K; Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, UK.; Department of Anthropology, University of Zurich, 8057, Zurich, Switzerland.
Źródło:
Scientific reports [Sci Rep] 2022 Aug 18; Vol. 12 (1), pp. 14119. Date of Electronic Publication: 2022 Aug 18.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Primates*
Sclera*
Animals ; Biological Evolution ; Pan troglodytes ; Phylogeny ; Pigmentation
References:
Kobayashi, H. & Kohshima, S. Unique morphology of the human eye. Nature 387, 767–768 (1997). (PMID: 919455710.1038/42842)
Kobayashi, H. & Kohshima, S. Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. J. Hum. Evol. 40, 419–435 (2001). (PMID: 1132280310.1006/jhev.2001.0468)
Kobayashi, H. & Hashiya, K. The gaze that grooms: Contribution of social factors to the evolution of primate eye morphology. Evol. Hum. Behav. 32, 157–165 (2011). (PMID: 10.1016/j.evolhumbehav.2010.08.003)
Mayhew, J. A. & Gómez, J. C. Gorillas with white sclera: A naturally occurring variation in a morphological trait linked to social cognitive functions. Am. J. Primatol. 77, 869–877 (2015). (PMID: 2584612110.1002/ajp.22411)
Perea-García, J. O., Kret, M. E., Monteiro, A. & Hobaiter, C. Scleral pigmentation leads to conspicuous, not cryptic, eye morphology in chimpanzees. Proc. Natl. Acad. Sci. USA 116, 19248–19250 (2019). (PMID: 31481611676524510.1073/pnas.1911410116)
Caspar, K. R., Biggemann, M., Geissmann, T. & Begall, S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci. Rep. 11, 1–14 (2021). (PMID: 10.1038/s41598-021-92348-z)
Kano, F., Kawaguchi, Y. & Hanling, Y. Experimental evidence that uniformly white sclera enhances the visibility of eye-gaze direction in humans and chimpanzees. Elife 11, e74086 (2022). (PMID: 35256053890382710.7554/eLife.74086)
Kano, F. et al. What is unique about the human eye? Comparative image analysis on the external eye morphology of human and nonhuman great apes. Evol. Hum. Behav. 1, e4 (2021).
Tomasello, M., Hare, B., Lehmann, H. & Call, J. Reliance on head versus eyes in the gaze following of great apes and human infants: The cooperative eye hypothesis. J. Hum. Evol. 52, 314–320 (2007). (PMID: 1714063710.1016/j.jhevol.2006.10.001)
Mearing, A. S. & Koops, K. Quantifying gaze conspicuousness: Are humans distinct from chimpanzees and bonobos?. J. Hum. Evol. 157, 103043 (2021). (PMID: 3424686410.1016/j.jhevol.2021.103043)
Hare, B. Survival of the friendliest: Homo sapiens evolved via selection for prosociality. Annu. Rev. Psychol. 68, 155–186 (2017). (PMID: 2773280210.1146/annurev-psych-010416-044201)
Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014). (PMID: 25024034409636110.1534/genetics.114.165423)
Wrangham, R. W. Two types of aggression in human evolution. Proc. Natl. Acad. Sci. USA 115, 245–253 (2018). (PMID: 2927937910.1073/pnas.1713611115)
Ghazanfar, A. A. et al. Domestication phenotype linked to vocal behavior in marmoset monkeys. Curr. Biol. 30, 5026–5032 (2020). (PMID: 33065007820479710.1016/j.cub.2020.09.049)
Sánchez-Villagra, M. R. & Van Schaik, C. P. Evaluating the self-domestication hypothesis of human evolution. Evol. Anthropol. 28, 133–143 (2019). (PMID: 3093892010.1002/evan.21777)
Barth, J., Reaux, J. E. & Povinelli, D. J. Chimpanzees’(Pan troglodytes) use of gaze cues in object-choice tasks: different methods yield different results. Anim. Cogn. 8, 84–92 (2005). (PMID: 1544910010.1007/s10071-004-0235-x)
Burkart, J. M. et al. The evolutionary origin of human hyper-cooperation. Nat. Commun. 5, 1–9 (2014). (PMID: 10.1038/ncomms5747)
Yorzinski, J. L., Thorstenson, C. A. & Nguyen, T. P. Sclera and iris color interact to influence gaze perception. Front. Psychol. 12, 676 (2021). (PMID: 10.3389/fpsyg.2021.632616)
Perea-García, J. O., Danel, D. P. & Monteiro, A. Diversity in primate external eye morphology: Previously undescribed traits and their potential adaptive value. Symmetry. 13, 1270 (2021). (PMID: 10.3390/sym13071270)
Duke-Elder, S. S. The eye in evolution. In System of Ophthalmology (ed. Duke-Elder, S. S.) 453 (Henry Kimpton, 1985).
Kano, F. & Call, J. Cross-species variation in gaze following and conspecific preference among great apes, human infants and adults. Anim. Behav. 91, 137–150 (2014). (PMID: 10.1016/j.anbehav.2014.03.011)
Rosati, A. G. & Hare, B. Looking past the model species: Diversity in gaze-following skills across primates. Curr. Opin. Neurobiol. 19, 45–51 (2009). (PMID: 1939421410.1016/j.conb.2009.03.002)
MacLean, E. L. et al. Group size predicts social but not nonsocial cognition in lemurs. PLoS ONE 8, e66359 (2013). (PMID: 23840450369416510.1371/journal.pone.0066359)
Flombaum, J. I. & Santos, L. R. Rhesus monkeys attribute perceptions to others. Curr. Biol. 15, 447–452 (2005). (PMID: 1575303910.1016/j.cub.2004.12.076)
Hall, K. et al. Chimpanzee uses manipulative gaze cues to conceal and reveal information to foraging competitor. Am. J. Primatol. 79, e22622 (2017). (PMID: 10.1002/ajp.22622)
Bethell, E. J., Vick, S. J. & Bard, K. A. Measurement of eye-gaze in chimpanzees (Pan troglodytes). Am. J. Primatol. 69, 562–575 (2007). (PMID: 1721662710.1002/ajp.20376)
Whitham, W., Schapiro, S. J., Troscianko, J. & Yorzinski, J. L. Chimpanzee (Pan troglodytes) gaze is conspicuous at ecologically-relevant distances. Sci. Rep. 12, 1–7 (2022). (PMID: 10.1038/s41598-022-13273-3)
Povinelli, D. J. & Eddy, T. J. Chimpanzees: Joint visual attention. Psychol. Sci. 7, 129–135 (1996). (PMID: 10.1111/j.1467-9280.1996.tb00345.x)
Povinelli, D. J. & Eddy, T. J. Factors influencing young chimpanzees’(Pan troglodytes) recognition of attention. J. Comp. Psychol. 110, 336 (1996). (PMID: 895650510.1037/0735-7036.110.4.336)
Itakura, S. & Tanaka, M. Use of experimenter-given cues during object-choice tasks by chimpanzees (Pan troglodytes), an orangutan (Pongo pygmaeus), and human infants (Homo sapiens). J. Comp. Psychol. 112, 119 (1998). (PMID: 964278210.1037/0735-7036.112.2.119)
Povinelli, D. J., Dunphy-Lelii, S., Reaux, J. E. & Mazza, M. P. Psychological diversity in chimpanzees and humans: New longitudinal assessments of chimpanzees’ understanding of attention. Brain Behav. Evol. 59, 33–53 (2002). (PMID: 1209785910.1159/000063732)
Call, J., Agnetta, B. & Tomasello, M. Cues that chimpanzees do and do not use to find hidden objects. Anim. Cogn. 3, 23–34 (2000). (PMID: 10.1007/s100710050047)
Deaner, R. O. & Platt, M. L. Reflexive social attention in monkeys and humans. Curr. Biol. 13, 1609–1613 (2003). (PMID: 1367859110.1016/j.cub.2003.08.025)
Itakura, S. & Anderson, J. R. Learning to use experimenter-given cues during an object-choice task by a capuchin monkey. Curr. Psychol. Cogn. 15, 103–112 (1996).
Jaeggi, A. V., Burkart, J. M. & van Schaik, C. P. On the psychology of cooperation in humans and other primates: combining the natural history and experimental evidence of prosociality. Philos. Trans. R. Soc. B. 365, 2723–2735 (2010). (PMID: 10.1098/rstb.2010.0118)
Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417 (2014). (PMID: 2523066410.1038/nature13727)
Cerrito, P. & DeCasien, A. R. The expression of care: alloparental care frequency predicts neural control of facial muscles in primates. Evolution https://doi.org/10.1111/evo.14275J.O (2021). (PMID: 10.1111/evo.14275J.O34019303)
Miss, F. M. & Burkart, J. M. Corepresentation during joint action in marmoset monkeys (Callithrix jacchus). Psychol. Sci. 29, 984–995 (2018). (PMID: 2970203110.1177/0956797618772046)
Jessen, S. & Grossmann, T. Unconscious discrimination of social cues from eye whites in infants. Proc. Natl. Acad. Sci. USA 111, 16208–16213 (2014). (PMID: 25349392423457310.1073/pnas.1411333111)
Perea-García, J. O. Quantifying ocular morphologies in extant primates for reliable interspecific comparisons. J. Lang. Evol. 1, 151–158 (2016). (PMID: 10.1093/jole/lzw004)
Gómez, J. M., Verdú, M., González-Megías, A. & Méndez, M. The phylogenetic roots of human lethal violence. Nature 538, 233–237 (2016). (PMID: 2768070110.1038/nature19758)
Bergman, T. J. & Beehner, T. C. A simple method for measuring colour in wild animals: validation and use on chest patch colour in geladas (Theropithecus gelada). Biol. J. Linn. Soc. 94, 231–240 (2008). (PMID: 10.1111/j.1095-8312.2008.00981.x)
Shepherd, S. V. Following gaze: Gaze-following behavior as a window into social cognition. Front. Integr. Neurosci. 4, 5 (2010). (PMID: 204284942859805)
Burkart, J. M. & van Schaik, C. Group service in macaques (Macaca fuscata), capuchins (Cebus apella) and marmosets (Callithrix jacchus): A comparative approach to identifying proactive prosocial motivations. J. Comp. Psychol. 127, 212 (2013). (PMID: 2225097010.1037/a0026392)
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). (PMID: 22930834555454210.1038/nmeth.2089)
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2012). (PMID: 23193287353119010.1093/nar/gks1195)
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/ .
Orme, D. et al. Caper: Comparative Analyses of Phylogenetics and Evolution in R (2012).
Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010). (PMID: 10.1002/evan.20251)
Ekwaru, J. P. & Veugelers, P. J. The overlooked importance of constants added in log transformation of independent variables with zero values: A proposed approach for determining an optimal constant. Stat. Biopharm. Res. 10, 26–29 (2018). (PMID: 10.1080/19466315.2017.1369900)
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999). (PMID: 1055390410.1038/44766)
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 212–226 (2015).
Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol Evol. 3, 743–756 (2012). (PMID: 10.1111/j.2041-210X.2012.00196.x)
Carvalho, P., Diniz-Filho, J. A. F. & Bini, L. M. Factors influencing changes in trait correlations across species after using phylogenetic independent contrasts. Evol. Ecol. 20, 591–602 (2006). (PMID: 10.1007/s10682-006-9119-7)
Grant Information:
51NF40_180888 Switzerland SNSF_ Swiss National Science Foundation
Entry Date(s):
Date Created: 20220818 Date Completed: 20220822 Latest Revision: 20221117
Update Code:
20240105
PubMed Central ID:
PMC9388658
DOI:
10.1038/s41598-022-18275-9
PMID:
35982191
Czasopismo naukowe
The drivers of divergent scleral morphologies in primates are currently unclear, though white sclerae are often assumed to underlie human hyper-cooperative behaviours. Humans are unusual in possessing depigmented sclerae whereas many other extant primates, including the closely-related chimpanzee, possess dark scleral pigment. Here, we use phylogenetic generalized least squares (PGLS) analyses with previously generated species-level scores of proactive prosociality, social tolerance (both n = 15 primate species), and conspecific lethal aggression (n = 108 primate species) to provide the first quantitative, comparative test of three existing hypotheses. The 'self-domestication' and 'cooperative eye' explanations predict white sclerae to be associated with cooperative, rather than competitive, environments. The 'gaze camouflage' hypothesis predicts that dark scleral pigment functions as gaze direction camouflage in competitive social environments. Notably, the experimental evidence that non-human primates draw social information from conspecific eye movements is unclear, with the latter two hypotheses having recently been challenged. Here, we show that white sclerae in primates are associated with increased cooperative behaviours whereas dark sclerae are associated with reduced cooperative behaviours and increased conspecific lethal violence. These results are consistent with all three hypotheses of scleral evolution, suggesting that primate scleral morphologies evolve in relation to variation in social environment.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies