Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Ambra1 in cancer: implications for clinical oncology.

Tytuł:
Ambra1 in cancer: implications for clinical oncology.
Autorzy:
Qin YQ; Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, 530007, Guangxi, People's Republic of China.
Liu SY; Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, 530007, Guangxi, People's Republic of China.
Lv ML; Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, 530007, Guangxi, People's Republic of China.
Sun WL; Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, 530007, Guangxi, People's Republic of China. .
Źródło:
Apoptosis : an international journal on programmed cell death [Apoptosis] 2022 Oct; Vol. 27 (9-10), pp. 720-729. Date of Electronic Publication: 2022 Aug 22.
Typ publikacji:
Journal Article; Review; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2005- : Dordrecht, Netherlands : Springer
Original Publication: London : Rapid Science Publishers,
MeSH Terms:
Adaptor Proteins, Signal Transducing*/metabolism
Apoptosis*/genetics
Autophagy/genetics ; Beclin-1/metabolism ; Carcinogenesis/genetics ; Humans ; Medical Oncology
References:
Cianfanelli V, Nazio F, Cecconi F (2015) Connecting autophagy: AMBRA1 and its network of regulation. Mol Cell Oncol 2(1):e970059. (PMID: 27308402490523410.4161/23723548.2014.970059)
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125. (PMID: 1758950410.1038/nature05925)
Antonioli M, Albiero F, Nazio F, Vescovo T, Perdomo AB, Corazzari M et al (2014) AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev Cell 31(6):734–746. (PMID: 2549991310.1016/j.devcel.2014.11.013)
Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 17:20–30. (PMID: 2543805510.1038/ncb3072)
Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168. (PMID: 20921139295344510.1083/jcb.201002100)
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15:406–416. (PMID: 2352495110.1038/ncb2708)
Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM et al (2015) AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 22:419–432. (PMID: 2521594710.1038/cdd.2014.139)
Strappazzon F, Di Rita A, Cianfanelli V, D’Orazio M, Nazio F, Fimia GM et al (2016) Pro-survival AMBRA1 turns into a pro-apoptotic BH3-like protein during mitochondrial apoptosis. Autophagy 12:963–975. (PMID: 27123694492244010.1080/15548627.2016.1164359)
Mei Y, Su M, Soni G, Salem S, Colbert CL, Sinha SC (2014) Intrinsically disordered regions in autophagy proteins. Proteins 82:565–578. (PMID: 2411519810.1002/prot.24424)
Peng Z, Xue B, Kurgan L, Uversky VN (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20:1257–1267. (PMID: 23764774374150210.1038/cdd.2013.65)
Cianfanelli V, De Zio D, Di Bartolomeo S, Nazio F, Strappazzon F, Cecconi F (2015) Ambra1 at a glance. J Cell Sci 128:2003–2008. (PMID: 2603406110.1242/jcs.168153)
Fimia GM, Corazzari M, Antonioli M, Piacentini M (2013) Ambra1 at the crossroad between autophagy and cell death. Oncogene 32:3311–3318. (PMID: 2306965410.1038/onc.2012.455)
Sun WL (2016) Ambra1 in autophagy and apoptosis: Implications for cell survival and chemotherapy resistance. Oncol Lett 12:367–374. (PMID: 27347152490695510.3892/ol.2016.4644)
Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S et al (2012) Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19(9):1495–1504. (PMID: 22441670342247410.1038/cdd.2012.27)
Gu W, Wan D, Qian Q, Yi B, He Z, Gu Y et al (2014) Ambra1 is an essential regulator of autophagy and apoptosis in SW620 cells: pro-survival role of Ambra1. PLoS ONE 9(2):e90151. (PMID: 24587252393600010.1371/journal.pone.0090151)
Shen M, Duan WM, Wu MY, Wang WJ, Liu L, Xu MD et al (2015) Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol Rep 34(1):359–367. (PMID: 2600521510.3892/or.2015.4005)
Li XY, Zhang LJ, Yu LL, Wei W, Lin XY, Hou XM et al (2016) shRNA-mediated AMBRA1 knockdown reduces the cisplatin-induced autophagy and sensitizes ovarian cancer cells to cisplatin. J Toxicol Sci 41(1):45–53. (PMID: 2676339210.2131/jts.41.45)
Sun WL, Wang L, Luo J, Zhu HW, Cai ZW (2018) Ambra1 modulates the sensitivity of breast cancer cells to epirubicin by regulating autophagy via ATG12. Cancer Sci 109(10):3129–3138. (PMID: 30027574617205510.1111/cas.13743)
Sun WL, Wang L, Luo J, Zhu HW, Cai ZW (2019) Ambra1 inhibits paclitaxel-induced apoptosis in breast cancer cells by modulating the Bim/mitochondrial pathway. Neoplasma 66(3):377–385. (PMID: 3078428210.4149/neo_2018_180710N467)
Sun WL, He LY, Liang L, Liu SY, Luo J, Lv ML et al (2022) Ambra1 regulates apoptosis and chemosensitivity in breast cancer cells through the Akt-FoxO1-Bim pathway. Apoptosis 27:329–341. (PMID: 3525726510.1007/s10495-022-01718-z)
Liu J, Chen ZY, Guo J, Wang L, Liu XH (2019) Ambra1 induces autophagy and desensitizes human prostate cancer cells to cisplatin. Biosci Rep 39(8):BSR20170770. (PMID: 29101240670659410.1042/BSR20170770)
Nitta T, Sato Y, Ren XS, Harada K, Sasaki M, Hirano S et al (2014) Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma. Int J Clin Exp Pathol 7(8):4913–4921. (PMID: 251973624152052)
Liu JQ, Yuan B, Cao J, Luo HJ, Gu SC, Zhang MD et al (2021) AMBRA1 promotes TGF beta signaling via nonproteolytic polyubiquitylation of Smad4. Cancer Res 81(19):5007–5020. (PMID: 3436279710.1158/0008-5472.CAN-21-0431)
Nazio F, Po A, Abballe L, Ballabio C, Camassei FD, Bordi M et al (2021) Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathol 142(3):537–564. (PMID: 34302498835769410.1007/s00401-021-02347-7)
Di Leo L, Bodemeyer V, Bosisio FM, Claps G, Carretta M, Rizza S et al (2021) Loss of Ambra1 promotes melanoma growth and invasion. Nat Commun 12(1):2550. (PMID: 33953176810010210.1038/s41467-021-22772-2)
Maiani E, Milletti G, Nazio F, Holdgaard SG, Bartkova J, Rizza S et al (2021) AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature 592:799–803. (PMID: 33854232886455110.1038/s41586-021-03422-5)
Simoneschi D, Rona G, Zhou N, Jeong YT, Jiang SW, Milletti G et al (2021) CRL4 regulates the stability of D-type cyclins. DNA Cell Biol 40(12):1457–1461. (PMID: 34495753874225910.1089/dna.2021.0659)
Maiani E, Milletti G, Cecconi F (2021) The pro-autophagic protein AMBRA1 coordinates cell cycle progression by regulating CCND (cyclin D) stability. Autophagy 17(12):4506–4508. (PMID: 3465757310.1080/15548627.2021.1985917)
Schoenherr C, Byron A, Griffith B, Loftus A, Wills JC, Munro AF et al (2020) The autophagy protein Ambra1 regulates gene expression by supporting novel transcriptional complexes. J Biol Chem 295(34):12045–12057. (PMID: 32616651744350110.1074/jbc.RA120.012565)
Cianfanelli V, Cecconi F (2015) AMBRA1: When autophagy meets cell proliferation. Autophagy 11(9):1705–1707. (PMID: 26101901459064010.1080/15548627.2015.1053681)
Zhao BB, Yang Y, Cun BY, Chen P (2022) AMBRA1 attenuates the proliferation of uveal melanoma cells. Open Med 17:1–14. (PMID: 10.1515/med-2021-0386)
Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514. (PMID: 1101801731697010.1101/gad.836800)
Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al (2004) A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6(4):308–318. (PMID: 1504812510.1038/ncb1110)
Junttila MR, Westermarck J (2008) Mechanisms of MYC stabilization in human malignancies. Cell Cycle 7(5):592–596. (PMID: 1825654210.4161/cc.7.5.5492)
Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. (PMID: 1923814810.1038/nrc2602)
Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677. (PMID: 893984910.1126/science.274.5293.1672)
Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E et al (2004) Mouse development and cell proliferation in the absence of D-Cyclins. Cell 118:477–491. (PMID: 1531576010.1016/j.cell.2004.07.025)
Qie S, Diehl JA (2016) Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med 94:1313–1326. (PMID: 2769587910.1007/s00109-016-1475-3)
Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20:187–190. (PMID: 761048210.1016/S0968-0004(00)89005-2)
Qie S, Alan Diehl J (2020) Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol 67:159–170. (PMID: 32006569739070510.1016/j.semcancer.2020.01.012)
Jin JP, Arias EE, Chen J, Harper JW, Walter JC (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23(5):709–721. (PMID: 1694936710.1016/j.molcel.2006.08.010)
Wainberg M, Kamber RA, Balsubramani A, Meyers RM, Sinnott-Armstrong N, Hornburg D et al (2021) A genome-wide atlas of co-essential modules assigns function to uncharacterized genes. Nat Genet 53(5):638–649. (PMID: 33859415876331910.1038/s41588-021-00840-z)
Pappula AL, Rasheed S, Mirzaei G, Petreaca RC, Bouley RA (2021) A genome-wide profiling of glioma patients with an IDH1 mutation using the catalogue of somatic mutations in cancer database. Cancers 13(17):4299. (PMID: 34503108842835310.3390/cancers13174299)
Beckmann PJ, Larson JD, Larsson AT, Ostergaard JP, Wagner S, Rahrmann EP et al (2019) Sleeping Beauty insertional mutagenesis reveals important genetic drivers of central nervous system embryonal tumors. Cancer Res 79(5):905–917. (PMID: 30674530639766510.1158/0008-5472.CAN-18-1261)
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. (PMID: 2137623010.1016/j.cell.2011.02.013)
Schoenherr C, Byron A, Sandilands E, Paliashvili K, Baillie GS, Valacca V et al (2017) Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks. Elife 6:e23172. (PMID: 28362576537618810.7554/eLife.23172)
Di Leo L, De Zio D (2021) AMBRA1 has an impact on melanoma development beyond autophagy. Autophagy 17(7):1802–1803. (PMID: 34156327835459610.1080/15548627.2021.1940608)
Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69–84. (PMID: 3045947610.1038/s41580-018-0080-4)
Babaeia G, Aziza Gholizadeh-Ghaleh S, Jaghia NZZ (2021) EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother 133:110909. (PMID: 10.1016/j.biopha.2020.110909)
Majidpoor J, Mortezaee K (2021) Steps in metastasis: an updated review. Med Oncol 38(1):3. (PMID: 3339420010.1007/s12032-020-01447-w)
Hao Y, Baker D, Ten Dijke P (2019) TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 20:2767. (PMID: 660037510.3390/ijms20112767)
Moustakas A, Heldin CH (2012) Induction of epithelial-mesenchymal transition by transforming growth factor beta. Semin Cancer Biol 22:446–454. (PMID: 2254872410.1016/j.semcancer.2012.04.002)
Liu T, Feng XH (2010) Regulation of TGF-beta signalling by protein phosphatases. Biochem J 430:191–198. (PMID: 2070457010.1042/BJ20100427)
Minamoto S, Ikegame K, Ueno K, Narazaki M, Naka T, Yamamoto H et al (1997) Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem Biophys Res Commun 237:79–83. (PMID: 926683310.1006/bbrc.1997.7080)
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8(4):603–619. (PMID: 27019364492581710.18632/aging.100934)
Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. (PMID: 1181849210.1146/annurev.med.53.082901.103929)
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234. (PMID: 1651837510.1038/nrd1984)
Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17(9):528–542. (PMID: 2875165110.1038/nrc.2017.53)
Li XH, He SK, Ma BY (2020) Autophagy and autophagy-related proteins in cancer. Mol Cancer 19(1):12. (PMID: 31969156697507010.1186/s12943-020-1138-4)
Huang TZ, Song X, Yang YY, Wan XC, Alvarez AA, Sastry N et al (2018) Autophagy and hallmarks of cancer. Crit Rev Oncog 23(5–6):247–267. (PMID: 30311559644741010.1615/CritRevOncog.2018027913)
Zhou YL, Lizaso A, Mao XR, Yang N, Zhang YC (2020) Novel AMBRA1-ALK fusion identified by next-generation sequencing in advanced gallbladder cancer responds to crizotinib: a case report. Ann Transl Med 8(17):1099. (PMID: 33145318757593310.21037/atm-20-1007)
Ko YH, Cho YS, Won HS, Jeon EK, An HJ, Hong SU (2013) Prognostic significance of autophagy-related protein expression in resected pancreatic ductal adenocarcinoma. Pancreas 42(5):829–835. (PMID: 2342949610.1097/MPA.0b013e318279d0dc)
Qu B, Yao L, Ma HL, Chen HL, Zhang Z, Xie J (2017) Prognostic significance of autophagy-related proteins expression in resected human gastric adenocarcinoma. J Huazhong Univ Sci Technolog Med Sci 37(1):37–43. (PMID: 2822442310.1007/s11596-017-1691-2)
Ieni A, Cardia R, Giuffrè G, Rigoli L, Caruso RA, Tuccari G (2019) Immunohistochemical expression of autophagy-related proteins in advanced tubular gastric adenocarcinomas and its implications. Cancers 11(3):389. (PMID: 646861310.3390/cancers11030389)
Falasca L, Torino F, Marconi M, Costantini M, Pompeo V, Sentinelli S et al (2015) AMBRA1 and SQSTM1 expression pattern in prostate cancer. Apoptosis 20(12):1577–1586. (PMID: 26423274460206610.1007/s10495-015-1176-3)
Tang DYL, Ellis RA, Lovat PE (2016) Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol 6:236. (PMID: 27882308510119910.3389/fonc.2016.00236)
Contributed Indexing:
Keywords: Ambra1; Apoptosis; Autophagy; Cancer; Metastasis; Tumorigenesis
Substance Nomenclature:
0 (AMBRA1 protein, human)
0 (Adaptor Proteins, Signal Transducing)
0 (Beclin-1)
Entry Date(s):
Date Created: 20220822 Date Completed: 20220920 Latest Revision: 20220923
Update Code:
20240104
DOI:
10.1007/s10495-022-01762-9
PMID:
35994214
Czasopismo naukowe
Activating molecule in Beclin-1-regulated autophagy protein 1 (Ambra1) is well known to mediate the autophagy process and promote the formation of autophagosomes. In addition, Ambra1 is involved in the execution of apoptosis. A growing number of studies have revealed that this protein modifies the sensitivity of cancer cells to anticancer drugs by controlling the balance between autophagy and apoptosis. In addition, Ambra1 is a key factor in regulating the cell cycle, proliferation, invasion and migration. Therefore, it plays a key role in tumorigenesis and progression. Moreover, Ambra1 is highly expressed in a variety of cancers and is closely related to the prognosis of patients. Thus, it appears that Ambra1 has multiple roles in tumorigenesis and progression, which may have implications for clinical oncology. The present review focuses on recent advances in the study of Ambra1, especially the role of the protein in tumorigenesis, progression and effects on anticancer drug sensitivity.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies