Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Tea consumption and risk of lower respiratory tract infections: a two-sample mendelian randomization study.

Tytuł:
Tea consumption and risk of lower respiratory tract infections: a two-sample mendelian randomization study.
Autorzy:
Chen Y; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
Shen J; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China.
Wu Y; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
Ni M; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
Deng Y; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
Sun X; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
Wang X; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
Zhang T; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
Pan F; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China. .; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China. .
Tang Z; School of Health Service and Management, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China. tang_.
Źródło:
European journal of nutrition [Eur J Nutr] 2023 Feb; Vol. 62 (1), pp. 385-393. Date of Electronic Publication: 2022 Aug 30.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Darmstadt, Germany : Steinkopff, 1999-
MeSH Terms:
Respiratory Tract Infections*/epidemiology
Respiratory Tract Infections*/genetics
Respiratory Tract Infections*/prevention & control
Tea*
Humans ; Bronchiectasis/epidemiology ; Bronchiectasis/genetics ; Bronchiectasis/prevention & control ; Bronchitis/epidemiology ; Bronchitis/genetics ; Bronchitis/prevention & control ; Drinking ; Genome-Wide Association Study ; Influenza, Human/epidemiology ; Influenza, Human/genetics ; Influenza, Human/prevention & control ; Mendelian Randomization Analysis ; Polymorphism, Single Nucleotide
References:
Langelier C, Kalantar KL, Moazed F, Wilson MR, Crawford ED, Deiss T, Belzer A, Bolourchi S, Caldera S, Fung M, Jauregui A, Malcolm K, Lyden A, Khan L, Vessel K, Quan J, Zinter M, Chiu CY, Chow ED, Wilson J, Miller S, Matthay MA, Pollard KS, Christenson S, Calfee CS, DeRisi JL (2018) Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci USA 115(52):E12353-e12362. https://doi.org/10.1073/pnas.1809700115. (PMID: 10.1073/pnas.1809700115)
Carroll KC, Adams LL (2016) Lower respiratory tract infections. Microbioly Spectr. https://doi.org/10.1128/microbiolspec.DMIH2-0029-2016. (PMID: 10.1128/microbiolspec.DMIH2-0029-2016)
(2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 18(11):1191–1210. https://doi.org/10.1016/s1473-3099(18)30310-4.
Murdoch DR, Howie SRC (2018) The global burden of lower respiratory infections: making progress, but we need to do better. Lancet Infect Dis 18(11):1162–1163. https://doi.org/10.1016/s1473-3099(18)30407-9. (PMID: 10.1016/s1473-3099(18)30407-9)
Kamata K, Thein KN, Di Ja L, Win NC, Win SMK, Suzuki Y, Ito A, Osada H, Chon I, Phyu WW, Aizawa Y, Ikuse T, Ota T, Kyaw Y, Tin HH, Shobugawa Y, Watanabe H, Saito R, Saitoh A (2022) Clinical manifestations and outcome of viral acute lower respiratory infection in hospitalised children in Myanmar. BMC Infect Dis 22(1):350. https://doi.org/10.1186/s12879-022-07342-1. (PMID: 10.1186/s12879-022-07342-1)
Hemler EC, Hu FB (2019) Plant-based diets for personal, population, and planetary health. Adv Nutr (Bethesda, Md) 10(Suppl_4):S275–S283. https://doi.org/10.1093/advances/nmy117. (PMID: 10.1093/advances/nmy117)
Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439. https://doi.org/10.1038/nrc2641. (PMID: 10.1038/nrc2641)
Mhatre S, Srivastava T, Naik S, Patravale V (2021) Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review. Phytomed Int J Phytother Phytopharmacol 85:153286. https://doi.org/10.1016/j.phymed.2020.153286. (PMID: 10.1016/j.phymed.2020.153286)
O’Neill EJ, Termini D, Albano A, Tsiani E (2021) Anti-cancer properties of Theaflavins. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules26040987. (PMID: 10.3390/molecules26040987)
Trevisanato SI, Kim YI (2000) Tea and health. Nutr Rev 58(1):1–10. https://doi.org/10.1111/j.1753-4887.2000.tb01818.x. (PMID: 10.1111/j.1753-4887.2000.tb01818.x)
Khan N, Mukhtar H (2018) Tea polyphenols in promotion of human health. Nutrients. https://doi.org/10.3390/nu11010039. (PMID: 10.3390/nu11010039)
Park M, Yamada H, Matsushita K, Kaji S, Goto T, Okada Y, Kosuge K, Kitagawa T (2011) Green tea consumption is inversely associated with the incidence of influenza infection among schoolchildren in a tea plantation area of Japan. J Nutr 141(10):1862–1870. https://doi.org/10.3945/jn.110.137547. (PMID: 10.3945/jn.110.137547)
Watanabe I, Kuriyama S, Kakizaki M, Sone T, Ohmori-Matsuda K, Nakaya N, Hozawa A, Tsuji I (2009) Green tea and death from pneumonia in Japan: the Ohsaki cohort study. Am J Clin Nutr 90(3):672–679. https://doi.org/10.3945/ajcn.2009.27599. (PMID: 10.3945/ajcn.2009.27599)
Ide K, Yamada H, Matsushita K, Ito M, Nojiri K, Toyoizumi K, Matsumoto K, Sameshima Y (2014) Effects of green tea gargling on the prevention of influenza infection in high school students: a randomized controlled study. PLoS One 9(5):e96373. https://doi.org/10.1371/journal.pone.0096373. (PMID: 10.1371/journal.pone.0096373)
Kondo K, Suzuki K, Washio M, Ohfuji S, Adachi S, Kan S, Imai S, Yoshimura K, Miyashita N, Fujisawa N, Maeda A, Fukushima W, Hirota Y (2021) Association between coffee and green tea intake and pneumonia among the Japanese elderly: a case-control study. Sci Rep 11(1):5570. https://doi.org/10.1038/s41598-021-84348-w. (PMID: 10.1038/s41598-021-84348-w)
Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG (2015) Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 30(7):543–552. https://doi.org/10.1007/s10654-015-0011-z. (PMID: 10.1007/s10654-015-0011-z)
Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):R89-98. https://doi.org/10.1093/hmg/ddu328. (PMID: 10.1093/hmg/ddu328)
Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. https://doi.org/10.1002/sim.3034. (PMID: 10.1002/sim.3034)
Holmes MV, Ala-Korpela M, Smith GD (2017) Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 14(10):577–590. https://doi.org/10.1038/nrcardio.2017.78. (PMID: 10.1038/nrcardio.2017.78)
Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR (2016) Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol 45(6):1961–1974. https://doi.org/10.1093/ije/dyw220. (PMID: 10.1093/ije/dyw220)
Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314. https://doi.org/10.1002/gepi.21965. (PMID: 10.1002/gepi.21965)
Hartwig FP, Davey Smith G, Bowden J (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 46(6):1985–1998. https://doi.org/10.1093/ije/dyx102. (PMID: 10.1093/ije/dyx102)
Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, Paul DS, Freitag D, Burgess S, Danesh J, Young R, Butterworth AS (2016) PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics (Oxford, England) 32(20):3207–3209. https://doi.org/10.1093/bioinformatics/btw373. (PMID: 10.1093/bioinformatics/btw373)
Han Q, Wen X, Wang L, Han X, Shen Y, Cao J, Peng Q, Xu J, Zhao L, He J, Yuan H (2020) Role of hematological parameters in the diagnosis of influenza virus infection in patients with respiratory tract infection symptoms. J Clin Lab Anal 34(5):e23191. https://doi.org/10.1002/jcla.23191. (PMID: 10.1002/jcla.23191)
Delabre RM, Lapidus N, Salez N, Mansiaux Y, de Lamballerie X, Carrat F (2015) Risk factors of pandemic influenza A/H1N1 in a prospective household cohort in the general population: results from the CoPanFlu-France cohort. Influenza Other Respir Viruses 9(1):43–50. https://doi.org/10.1111/irv.12294. (PMID: 10.1111/irv.12294)
Reygaert WC (2014) The antimicrobial possibilities of green tea. Front Microbiol 5:434. https://doi.org/10.3389/fmicb.2014.00434. (PMID: 10.3389/fmicb.2014.00434)
Steinmann J, Buer J, Pietschmann T, Steinmann E (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 168(5):1059–1073. https://doi.org/10.1111/bph.12009. (PMID: 10.1111/bph.12009)
Falcinelli SD, Shi MC, Friedlander AM, Chua J (2017) Green tea and epigallocatechin-3-gallate are bactericidal against Bacillus anthracis. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx127. (PMID: 10.1093/femsle/fnx127)
Imanishi N, Tuji Y, Katada Y, Maruhashi M, Konosu S, Mantani N, Terasawa K, Ochiai H (2002) Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol Immunol 46(7):491–494. https://doi.org/10.1111/j.1348-0421.2002.tb02724.x. (PMID: 10.1111/j.1348-0421.2002.tb02724.x)
Song JM, Park KD, Lee KH, Byun YH, Park JH, Kim SH, Kim JH, Seong BL (2007) Biological evaluation of anti-influenza viral activity of semi-synthetic catechin derivatives. Antiviral Res 76(2):178–185. https://doi.org/10.1016/j.antiviral.2007.07.001. (PMID: 10.1016/j.antiviral.2007.07.001)
Donà M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S (2003) Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol (Baltimore, Md: 1950) 170(8):4335–4341. https://doi.org/10.4049/jimmunol.170.8.4335. (PMID: 10.4049/jimmunol.170.8.4335)
Xiaokaiti Y, Wu H, Chen Y, Yang H, Duan J, Li X, Pan Y, Tie L, Zhang L, Li X (2015) EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT. Sci Rep 5:11494. https://doi.org/10.1038/srep11494. (PMID: 10.1038/srep11494)
Grant Information:
MC_PC_17228 United Kingdom MRC_ Medical Research Council; National Natural Science Foundation of China National Natural Science Foundation of China; 2021lcxk043 Clinical Medicine Discipline construction project of Anhui Medical University; 2017D140 the funds for academic and technical leaders in Anhui province; MC_QA137853 United Kingdom MRC_ Medical Research Council
Contributed Indexing:
Keywords: Lower respiratory tract infections; Mendelian randomization; Tea
Substance Nomenclature:
0 (Tea)
Entry Date(s):
Date Created: 20220830 Date Completed: 20230215 Latest Revision: 20230308
Update Code:
20240105
PubMed Central ID:
PMC9427168
DOI:
10.1007/s00394-022-02994-w
PMID:
36042048
Czasopismo naukowe
Background: Observational studies have reported the association between tea consumption and the risk of lower respiratory tract infections (LRTIs). However, a consensus has yet to be reached, and whether the observed association is driven by confounding factors or reverse causality remains unclear.
Method: A two-sample Mendelian randomization (MR) analysis was conducted to determine whether genetically predicted tea intake is causally associated with the risk of common LRTI subtypes. Genome-wide association study (GWAS) from UK Biobank was used to identify single-nucleotide polymorphisms (SNPs) associated with an extra cup of tea intake each day. The summary statistics for acute bronchitis, acute bronchiolitis, bronchiectasis, pneumonia, and influenza and pneumonia were derived from the FinnGen project.
Results: We found that genetically predicted an extra daily cup of tea intake was causally associated with the decreased risk of bronchiectasis [odds ratio (OR) = 0.61, 95% confidence interval (CI) = 0.47-0.78, P < 0.001], pneumonia (OR = 0.90, 95% CI = 0.85-0.96, P = 0.002), influenza and pneumonia (OR = 0.91, 95% CI = 0.85-0.97, P = 0.002), but not with acute bronchitis (OR = 0.91, 95% CI = 0.82-1.01, P = 0.067) and acute bronchiolitis (OR = 0.79, 95% CI = 0.60-1.05, P = 0.100). Sensitivity analyses showed that no heterogeneity and pleiotropy could bias the results.
Conclusions: Our findings provided new evidence that genetically predicted an extra daily cup of tea intake may causally associated with a decreased risk of bronchiectasis, pneumonia, and influenza and pneumonia.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies