Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

3-Bromopyruvate, a caloric restriction mimetic, exerts a mitohormetic effect to provide neuroprotection through activation of autophagy in rats during aging.

Tytuł:
3-Bromopyruvate, a caloric restriction mimetic, exerts a mitohormetic effect to provide neuroprotection through activation of autophagy in rats during aging.
Autorzy:
Arya JK; Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
Kumar R; Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
Tripathi SS; Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
Rizvi SI; Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India. .
Źródło:
Biogerontology [Biogerontology] 2022 Oct; Vol. 23 (5), pp. 641-652. Date of Electronic Publication: 2022 Sep 01.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Dordrecht ; Boston : Kluwer Academic, c2000-
MeSH Terms:
Caloric Restriction*
Neuroprotection*
Aging/metabolism ; Animals ; Antioxidants/metabolism ; Antioxidants/pharmacology ; Autophagy ; Biomarkers/metabolism ; Male ; Oxidative Stress ; Pyruvates ; Rats ; Reactive Oxygen Species/metabolism
References:
Arya JK, Kumar R, Tripathi SS, Rizvi SI (2020) 3-Bromopyruvate elevates ROS and induces hormesis to exert a caloric restriction mimetic effect in young and old rats. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2020.1828485. (PMID: 10.1080/13813455.2020.182848533026905)
Arya JK, Kumar R, Tripathi SS, Rizvi SI (2022) Hormetic effect of 3-Bromopyruvate on age-induced alterations in erythrocyte membrane transporters and oxidative biomarkers in rats. Rejuven Res. https://doi.org/10.1089/rej.2021.0060 . rej.2021.0060. (PMID: 10.1089/rej.2021.0060)
Bárcena C, Mayoral P, Quirós PM (2018) Mitohormesis, an antiaging paradigm. International review of cell and molecular biology. Elsevier, Amsterdam, pp 35–77.
Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292. (PMID: 10.1006/abio.1996.02928660627)
Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472. https://doi.org/10.1016/j.exger.2010.01.003. (PMID: 10.1016/j.exger.2010.01.003200646002879443)
Cabré R, Naudí A, Dominguez-Gonzalez M et al (2017) Sixty years old is the breakpoint of human frontal cortex aging. Free Radic Biol Med 103:14–22. https://doi.org/10.1016/j.freeradbiomed.2016.12.010. (PMID: 10.1016/j.freeradbiomed.2016.12.01027979658)
Calabrese V, Cornelius C, Dinkova-Kostova AT et al (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822:753–783. https://doi.org/10.1016/j.bbadis.2011.11.002. (PMID: 10.1016/j.bbadis.2011.11.00222108204)
Charan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4:303–306. https://doi.org/10.4103/0976-500X.119726. (PMID: 10.4103/0976-500X.119726242502143826013)
Conti V, Corbi G, Simeon V et al (2015) Aging-related changes in oxidative stress response of human endothelial cells. Aging Clin Exp Res 27:547–553. https://doi.org/10.1007/s40520-015-0357-9. (PMID: 10.1007/s40520-015-0357-925835220)
Cooper RL, Linnoila M (1977) Sexual behavior in aged, noncycling female rats. Physiol Behav 18:573–576. https://doi.org/10.1016/0031-9384(77)90054-3. (PMID: 10.1016/0031-9384(77)90054-3561413)
Cox LM, Schafer MJ, Sohn J et al (2019) Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci Rep 9:17904. https://doi.org/10.1038/s41598-019-54187-x. (PMID: 10.1038/s41598-019-54187-x317846106884494)
Evans P, Lyras L, Halliwell B (1999) Measurement of protein carbonyls in human brain tissue. Methods in enzymology. Elsevier, Amsterdam, pp 145–156.
Ferguson M, Mockett RJ, Shen Y et al (2005) Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J 390:501–511. https://doi.org/10.1042/BJ20042130. (PMID: 10.1042/BJ20042130158537661198930)
Garg G, Singh S, Singh AK, Rizvi SI (2017) Antiaging effect of metformin on brain in naturally aged and accelerated senescence model of rat. Rejuvenation Res 20:173–182. https://doi.org/10.1089/rej.2016.1883. (PMID: 10.1089/rej.2016.188327897089)
Hamre KM, Cassell MD, West JR (1989) The development of laminar staining for neuron-specific enolase in the rat somatosensory cortex. Dev Brain Res 46:213–220. https://doi.org/10.1016/0165-3806(89)90285-X. (PMID: 10.1016/0165-3806(89)90285-X)
Hatefi Y, Rieske JS (1967) [43] Preparation and properties of DPNH-coenzyme Q reductase (complex I of the respiratory chain). In: Methods in enzymology. Elsevier, pp 235–239.
Hatefi Y, Stiggall DL (1978) [5] Preparation and properties of succinate: Ubiquinone oxidoreductase (complex II). In: Methods in enzymology. Elsevier, pp 21–27.
Hong Q, Yu S, Mei Y et al (2014) Reduces oxidative stress caused by hyperuricemia via upregulation of catalase. Cell Physiol Biochem 34:1675–1685. https://doi.org/10.1159/000366369. (PMID: 10.1159/00036636925401709)
Ingram DK, Roth GS (2021) Glycolytic inhibition: an effective strategy for developing calorie restriction mimetics. GeroScience 43:1159–1169. https://doi.org/10.1007/s11357-020-00298-7. (PMID: 10.1007/s11357-020-00298-733184758)
Ishii T, Yasuda K, Akatsuka A et al (2005) A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res 65:203–209. (PMID: 10.1158/0008-5472.203.65.1)
Jaeger PA, Wyss-Coray T (2010) Beclin 1 complex in autophagy and Alzheimer disease. Arch Neurol. https://doi.org/10.1001/archneurol.2010.258. (PMID: 10.1001/archneurol.2010.25820937944)
Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3:597–599. https://doi.org/10.4161/auto.4989. (PMID: 10.4161/auto.498917912023)
Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132. (PMID: 6490072)
Kumar R, Saraswat K, Rizvi SI (2020) 2-Deoxy– d-glucose at chronic low dose acts as a caloric restriction mimetic through a mitohormetic induction of ROS in the brain of accelerated senescence model of rat. Arch Gerontol Geriatr 90:104133. https://doi.org/10.1016/j.archger.2020.104133. (PMID: 10.1016/j.archger.2020.10413332559563)
Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco AV et al (2016) Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535:561–565. https://doi.org/10.1038/nature18618. (PMID: 10.1038/nature1861827383793)
Liapi C, Stolakis V, Zarros A et al (2013) Gestational exposure to cadmium alters crucial offspring rat brain enzyme activities: The role of cadmium-free lactation. Environ Toxicol Pharmacol 36:835–839. https://doi.org/10.1016/j.etap.2013.07.014. (PMID: 10.1016/j.etap.2013.07.01423981373)
Lee C, Longo V (2016) Dietary restriction with and without caloric restriction for healthy aging. F1000Res 5:117. https://doi.org/10.12688/f1000research.7136.1. (PMID: 10.12688/f1000research.7136.1)
Lee S-H, Min K-J (2013) Caloric restriction and its mimetics. BMB Rep 46:181–187. https://doi.org/10.5483/BMBRep.2013.46.4.033. (PMID: 10.5483/BMBRep.2013.46.4.033236152584133883)
López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039. (PMID: 10.1016/j.cell.2013.05.039237468383836174)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J BiolChem 193:265–275.
Madeo F, Pietrocola F, Eisenberg T, Kroemer G (2014) Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 13:727–740. https://doi.org/10.1038/nrd4391. (PMID: 10.1038/nrd439125212602)
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G (2019) Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metabol 29:592–610. https://doi.org/10.1016/j.cmet.2019.01.018. (PMID: 10.1016/j.cmet.2019.01.018)
Marambio P, Toro B, Sanhueza C et al (2010) Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochim et Biophys Acta (BBA)—Mol Basis Dis 1802:509–518. https://doi.org/10.1016/j.bbadis.2010.02.002. (PMID: 10.1016/j.bbadis.2010.02.002)
Massaad CA, Pautler RG, Klann E (2009) Mitochondrial superoxide: a key player in Alzheimer’s disease. Aging 1:758–761. https://doi.org/10.18632/aging.100088. (PMID: 10.18632/aging.100088201575642815734)
Mehrabani S, Bagherniya M, Askari G et al (2020) The effect of fasting or calorie restriction on mitophagy induction: a literature review. J Cachexia Sarcopenia Muscle 11:1447–1458. https://doi.org/10.1002/jcsm.12611. (PMID: 10.1002/jcsm.12611328564317749612)
Moore MN (2020) Lysosomes, autophagy, and hormesis in cell physiology, pathology, and age-related disease. Dose-Response 18:155932582093422. https://doi.org/10.1177/1559325820934227. (PMID: 10.1177/1559325820934227)
Moruno F, Pérez-Jiménez E, Knecht E (2012) Regulation of autophagy by glucose in mammalian cells. Cells 1:372–395. https://doi.org/10.3390/cells1030372. (PMID: 10.3390/cells1030372247104813901114)
Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–1249. https://doi.org/10.1152/ajpregu.00226.2004. (PMID: 10.1152/ajpregu.00226.200415271654)
Palmeira CM, Teodoro JS, Amorim JA et al (2019) Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Radic Biol Med 141:483–491. https://doi.org/10.1016/j.freeradbiomed.2019.07.017. (PMID: 10.1016/j.freeradbiomed.2019.07.017313490396718302)
Panossian L, Fenik P, Zhu Y et al (2011) SIRT1 regulation of wakefulness and senescence-like phenotype in wake neurons. J Neurosci 31:4025–4036. https://doi.org/10.1523/JNEUROSCI.5166-10.2011. (PMID: 10.1523/JNEUROSCI.5166-10.2011214116453065120)
Pedersen PL (2007) Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222. https://doi.org/10.1007/s10863-007-9094-x. (PMID: 10.1007/s10863-007-9094-x17879147)
Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and microglia: novel partners in neurodegeneration and aging. IJMS 18:598. https://doi.org/10.3390/ijms18030598. (PMID: 10.3390/ijms180305985372614)
Qin W, Yang T, Ho L et al (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754. https://doi.org/10.1074/jbc.M602909200. (PMID: 10.1074/jbc.M60290920016751189)
Reeg S, Grune T (2015) Protein oxidation in aging: does it play a role in aging progression? Antioxid Redox Signal 23:239–255. https://doi.org/10.1089/ars.2014.6062. (PMID: 10.1089/ars.2014.6062251784824507125)
Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51:327–336. https://doi.org/10.1016/j.freeradbiomed.2011.05.010. (PMID: 10.1016/j.freeradbiomed.2011.05.01021619928)
Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418. https://doi.org/10.1016/j.exger.2010.03.014. (PMID: 10.1016/j.exger.2010.03.01420350594)
Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695. https://doi.org/10.1016/j.cell.2011.07.030. (PMID: 10.1016/j.cell.2011.07.03021884931)
Ryter SW, Cloonan SM, Choi AMK (2013) Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 36:7–16. https://doi.org/10.1007/s10059-013-0140-8. (PMID: 10.1007/s10059-013-0140-8237087293887921)
Saraswat K, Kumar R, Rizvi SI (2019) Glycolytic inhibitor 2-deoxy-D-glucose at chronic low dose mimics calorie restriction in rats through mitohormetic induction of reactive oxygen species. Rejuven Res 22:377–384. https://doi.org/10.1089/rej.2018.2125. (PMID: 10.1089/rej.2018.2125)
Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465. https://doi.org/10.1146/annurev.biochem.74.082803.133500. (PMID: 10.1146/annurev.biochem.74.082803.13350016756498)
Scialò F, Fernández-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ros signaling: potential roles in health and disease. Front Physiol 8:428. https://doi.org/10.3389/fphys.2017.00428. (PMID: 10.3389/fphys.2017.00428287019605486155)
Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4. (PMID: 10.1016/0003-2697(68)90092-44973948)
Seidler RD, Bernard JA, Burutolu TB et al (2010) Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34:721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005. (PMID: 10.1016/j.neubiorev.2009.10.00519850077)
Shimomura Y, Nishikimi M, Ozawa T (1984) Isolation and reconstitution of the iron-sulfur protein in ubiquinolcytochrome c oxidoreductase complex. Phospholipids are essential for the integration of the iron-sulfur protein in the complex. J BiolChem 259:14059–14063.
Simonsen A, Cumming RC, Brech A et al (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila. Autophagy 4:176–184. https://doi.org/10.4161/auto.5269. (PMID: 10.4161/auto.526918059160)
Stefanatos R, Sanz A (2018) The role of mitochondrial ROS in the aging brain. FEBS Lett 592:743–758. https://doi.org/10.1002/1873-3468.12902. (PMID: 10.1002/1873-3468.1290229106705)
Streit WJ (2008) Microglial degeneration in the aging brain—bad news for neurons? Front Biosci. https://doi.org/10.2741/2937. (PMID: 10.2741/293718508444)
Taber HW, Morrison M (1964) Electron transport in staphylococci. Properties of a particle preparation from exponential phase Staphylococcus aureus. Arch Biochem Biophys 105:367–379. https://doi.org/10.1016/0003-9861(64)90021-9. (PMID: 10.1016/0003-9861(64)90021-914186744)
Wang M-M, Feng Y-S, Yang S-D et al (2019) The relationship between autophagy and brain plasticity in neurological diseases. Front Cell Neurosci 13:228. https://doi.org/10.3389/fncel.2019.00228. (PMID: 10.3389/fncel.2019.00228312446046542992)
Yun J, Finkel T (2014) Mitohormesis.  Cell Metab 19:757–766. https://doi.org/10.1016/j.cmet.2014.01.011. (PMID: 10.1016/j.cmet.2014.01.011245612604016106)
Zarse K, Schmeisser S, Groth M et al (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15:451–465. https://doi.org/10.1016/j.cmet.2012.02.013. (PMID: 10.1016/j.cmet.2012.02.013224827284844853)
Contributed Indexing:
Keywords: 3-Bromopyruvate; Autophagy; Mitohormesis; Neuroprotection; Reactive oxygen species
Substance Nomenclature:
0 (Antioxidants)
0 (Biomarkers)
0 (Pyruvates)
0 (Reactive Oxygen Species)
63JMV04GRK (bromopyruvate)
Entry Date(s):
Date Created: 20220901 Date Completed: 20220915 Latest Revision: 20220923
Update Code:
20240105
DOI:
10.1007/s10522-022-09988-5
PMID:
36048311
Czasopismo naukowe
In the present study, attempts have been made to evaluate the potential role of 3 Bromopyruvate (3-BP) a glycolytic inhibitor and a caloric restriction mimetic (CRM), to exert neuroprotection in rats during aging through modulation of autophagy. Young male rats (4 months), and naturally aged (22 months) male rats were supplemented with 3-BP (30 mg/kg b.w., orally) for 28 days. Our results demonstrate a significant increase in the antioxidant biomarkers (ferric reducing antioxidant potential level, total thiol, superoxide dismutase, and catalase activities) and a decrease in the level of pro-oxidant biomarkers such as protein carbonyl after 3-BP supplementation in brain tissues. A significant increase in reactive oxygen species (ROS) was observed due to the mitohormetic effect of 3-BP supplementation in the treated rats. Furthermore, the 3-BP treatment also enhanced the activities of electron transport chain complexes I and IV in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuroprotective and aging marker genes. RT-PCR data revealed that 3-BP up-regulated the expression of autophagy markers genes (Beclin-1 and LC3 β), sirtuin-1, and neuronal marker gene (NSE), respectively in the aging brain. The results suggest that 3-BP induces a mitohormetic effect through the elevation of ROS which reinforces defensive mechanism(s) targeted at regulating autophagy. These findings suggest that consistently low-dose 3-BP may be beneficial for neuroprotection during aging and age-related disorders.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies