Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hydrolysis of polyhydroxy polyunsaturated fatty acid-glycerophosphocholines by Group IIA, V, and X secretory phospholipases A 2 .

Tytuł:
Hydrolysis of polyhydroxy polyunsaturated fatty acid-glycerophosphocholines by Group IIA, V, and X secretory phospholipases A 2 .
Autorzy:
Kuksis A; Department of Biochemistry, University of Toronto, Toronto, Canada.
Pruzanski W
Źródło:
Lipids [Lipids] 2023 Jan; Vol. 58 (1), pp. 3-17. Date of Electronic Publication: 2022 Sep 17.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2018- : Hoboken, NJ : Wiley Subscription Services, Inc.
Original Publication: Chicago, American Oil Chemists' Society.
MeSH Terms:
Phospholipases A2, Secretory*
Fatty Acids, Omega-3*
Hydrolysis ; Fatty Acids, Nonesterified ; Lipoproteins/metabolism ; Fatty Acids ; Oxylipins
References:
Aoyagi R, Ikeda K, Isobe Y, Arita M. Comprehensive analyses of oxidized phospholipids using a measured MS/MS spectra library. J Lipid Res. 2017;58:2229-37. https://doi.org/10.1194/jlr.D077123.
Aryal P, Syed I, Lee J, Patel R, Nelson AT, Siegel D, et al. Distinct biological activities of isomers from several families of branched fatty acid esters of hydroxy fatty acids (FAHFAs). J Lipid Res. 2021;62:100108. https://doi.org/10.1016/j.jlr.2021.100108.
Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta. 2010;1801:1260-73. https://doi.org/10.1016/j.bbalip.2010.08.002.
Barden A, Mas E, Croft KD, Phillips M, Mori TA. Short-term n-3 fatty acid supplementation but not aspirin increases plasma proresolving mediators of inflammation. J Lipid Res. 2014;55:2401-7. https://doi.org/10.1194/jlr.M045583.
Brinckmann R, Schnurr K, Heydeck D, Rosenbach T, Kolde G, Kühn H. Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood. 1998;91(1):64-74.
Chen P, Véricel E, Lagarde M, Guichardant M. Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation. FASEB J. 2011;25:382-8. https://doi.org/10.1096/fj.10-161836.
Chiang N, Serhan CN. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem. 2020;64:443-62. https://doi.org/10.1042/EBC20200018.
Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res. 2011;50:115-31. https://doi.org/10.1016/j.plipres.2010.10.005.
Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, et al. Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. J Lipid Res. 2014;55:1150-64. https://doi.org/10.1194/jlr.M047357.
Ishizaki J, Suzuki N, Higashino K, Yokota Y, Ono T, Kawamoto K, et al. Cloning and characterization of novel mouse and human secretory phospholipase A2s. J. Biol. Chem. 1999;274:24973-24979.
Jahangiri A. High-density lipoprotein and the acute phase response. Curr Opin Endocrinol Diabetes Obes. 2010;17:156-60. https://doi.org/10.1097/MED.0b013e328337278b.
Kasuga K, Yang R, Porter TF, Agrawal N, Petasis NA, Irimia D, et al. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J Immunol. 2008;181:8677-87. https://doi.org/10.4049/jimmunol.181.12.8677.
Kühn H, O'Donnell VB. Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res. 2006;45:334-56. https://doi.org/10.1016/j.plipres.2006.02.003.
Kuksis A, Pruzanski W. Epoxy fatty acids: chemistry and biological properties. In: Ahmed M, editor. Fatty acids: chemistry, synthesis and applications, Chapter 2va. London, UK: Academic Press and AOCS Press Imprint; 2017a.
Kuksis A, Pruzanski W. Hydrolysis of phosphatidylcholine-isoprostanes (PtdCho-IP) by peripheral group IIA, V and X secretory phospholipases A2 (sPLA2). Lipids. 2017b;52:477-88. https://doi.org/10.1007/s11745-017-4264-z.
Kuksis A, Pruzanski W. Hydrolysis of glycerophosphocholine epoxides by human group IIA, V, and X secretory phospholipases A2. Lipids. 2021;56:521-35. https://doi.org/10.1002/lipd.12320.
Kuksis A, Pruzanski W. Destruction of polyunsaturated alkyl/acyl and alkenyl/acyl glycerophosphocholine of plasma lipoproteins during incubation with group V and X secretory phospholipase A2s. Lipids. 2022;57:91-104. https://doi.org/10.1002/lipd.12333.
Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res. 2020;61:1539-55. https://doi.org/10.1194/jlr.S120001025.
Liu M, Chen P, Véricel E, Lelli M, Béguin L, Lagarde M, et al. Characterization and biological effects of di-hydroxylated compounds deriving from the lipoxygenation of ALA. J Lipid Res. 2013;54:2083-94. https://doi.org/10.1194/jlr.M035139.
Mas E, Croft KD, Zahra P, Barden A, Mori TA. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem. 2012;58:1476-84. https://doi.org/10.1373/clinchem.2012.190199.
Maskrey BH, Bermúdez-Fajardo A, Morgan AH, Stewart-Jones E, Dioszeghy V, Taylor GW, et al. Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase [published correction appears in J Biol Chem 2009;284:25460]. J Biol Chem. 2007;282:20151-63. https://doi.org/10.1074/jbc.M611776200.
Massey KA, Nicolaou A. Lipidomics of oxidized polyunsaturated fatty acids. Free Radic Biol Med. 2013;59:45-55. https://doi.org/10.1016/j.freeradbiomed.2012.08.565.
Miki Y, Kidoguchi Y, Sato M, Taketomi Y, Taya C, Muramatsu K, et al. Dual roles of group IID phospholipase A2 in inflammation and cancer. J Biol Chem. 2016;291:15588-601. https://doi.org/10.1074/jbc.M116.734624.
Miki Y, Yamamoto K, Taketomi Y, Sato H, Shimo K, Kobayashi T, et al. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators. J Exp Med. 2013;210:1217-34. https://doi.org/10.1084/jem.20121887.
Morgan AH, Dioszeghy V, Maskrey BH, Thomas CP, Clark SR, Mathie SA. Phosphatidylethanolamine-esterified eicosanoids in the mouse: tissue localization and inflammation-dependent formation in Th-2 disease. J Biol Chem. 2009;284:21185-91. https://doi.org/10.1074/jbc.M109.021634.
Murphy RC. Specialized pro-resolving mediators: do they circulate in plasma? J Lipid Res. 2015;56:1641-2. https://doi.org/10.1194/jlr.C062356.
Norling LV, Spite M, Yang R, Flower RJ, Perretti M, Serhan CN. Cutting edge: humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing. J Immunol. 2011;186:5543-7. https://doi.org/10.4049/jimmunol.1003865.
O'Donnell VB, Maskrey B, Taylor GW. Eicosanoids: generation and detection in mammalian cells. Methods Mol Biol. 2009;462:5-23.
O'Donnell VB, Schebb NH, Milne GL, Murphy MH, Thomas CP, Steinhilber D, et al. Failure to apply standard limit-of-detection or limit-of-quantitation criteria to specialized pro-resolving mediator analysis incorrectly characterizes their presence in biological samples. Zenodo. 2021. https://doi.org/10.5281/zenodo.5766267.
Oliw EH, Brodowsky ID, Hörnsten L, Hamberg M. Bis-allylic hydroxylation of polyunsaturated fatty acids by hepatic monooxygenases and its relation to the enzymatic and nonenzymatic formation of conjugated hydroxy fatty acids. Arch Biochem Biophys. 1993;300:434-9. https://doi.org/10.1006/abbi.1993.1059.
Pruzanski W, Lambeau L, Lazdunski M, Cho W, Kopilova J, Kuksis A. Differential hydrolysis of molecular species of lipoprotein phosphatidylcholine by groups IIA, V and X secretory phospholipases A2. Biochim Biophys Acta. 2005;1736:38-50. https://doi.org/10.1016/j.bbalip.2005.07.005.
Pruzanski W, Stefanski E, deBeer FC, de Beer MC, Ravandi A, Kuksis A. Comparative analysis of lipid composition of normal and acute phase high density lipoproteins. J Lipid Res. 2000;41:1035-47. https://doi.org/10.1016/S0022-2275(20)32007-1.
Pruzanski W, Stefanski E, deBeer FC, de Beer MC, Vadas P, Ravandi A, et al. Lipoproteins are substrates for human secretory group IIA phospholipase A2; preferential hydrolysis of acute phase HDL. J Lipid Res. 1998;39:2150-60. https://doi.org/10.1016/S0022-2275(20)32470-6.
Ravandi A, Kuksis A, Shaikh NA. Glucosylated glycerophosphoethanolamines are the major LDL glycation products and increase LDL susceptibility to oxidation. Arterioscler Thromb Vasc Biol. 2000;20:467-77. https://doi.org/10.1161/01.ATV.20.2.467.
Reid RC. Inhibitors of secretory phospholipase A2 group IIA. Curr Med Chem. 2005;12:3011-26. https://doi.org/10.2174/092986705774462860.
Schebb NH, Ostermann AI, Yang J, Hammock BD, Hahn A, Schuchardt JP. Comparison of the effects of long-chain omega-3 fatty acid supplementation on plasma levels of free and esterified oxylipins. Prostaglandins Other Lipid Mediat. 2014;113-115:21-9. https://doi.org/10.1016/j.prostaglandins.2014.05.002.
Schuchardt JP, Schneider I, Willenberg I, Yang J, Hammock BD, Hahn A, et al. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA. Prostaglandins Other Lipid Mediat. 2014;109-111:23-31. https://doi.org/10.1016/j.prostaglandins.2014.03.001.
Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017;31:1273-88. https://doi.org/10.1096/fj.201601222R.
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Asp Med. 2018;64:1-17. https://doi.org/10.1016/j.mam.2017.08.002.
Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196:1025-37. https://doi.org/10.1084/jem.20020760.
Shakhov AN, Rubtsov AV, Lyakhov IG, Tumanov AV, Nedospasov SA. SPLASH (PLA2IID), a novel member of phospholipase A2 family, is associated with lymphotoxin deficiency. Genes Immun. 2000;1:191-9. https://doi.org/10.1038/sj.gene.6363659.
Shearer GC, Harris WS, Pedersen TL, Newman JW. Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters. J Lipid Res. 2010;51:2074-81. https://doi.org/10.1194/M900193-JLR200.
Shearer GC, Newman JW. Lipoprotein lipase releases esterified oxylipins from very low-density lipoproteins. Prostaglandins Leukot Essent Fatty Acids. 2008;79:215-22. https://doi.org/10.1016/j.plefa.2008.09.023.
Skarke C, Alamuddin N, Lawson JA, Li X, Ferguson JF, Reilly MP, et al. Bioactive products formed in humans from fish oils. J Lipid Res. 2015;56:1808-20. https://doi.org/10.1194/jlr.M060392.
Spector AA, Fang X, Snyder GD, Weintraub NL. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res. 2004;43:55-90. https://doi.org/10.1016/S0163-7827(03)00049-3.
Spector AA, Kim H-Y. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851:356-65. https://doi.org/10.1016/j.bbalip.2014.07.020.
Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111:5922-5943.
Thomas CP, Morgan LT, Maskrey BH, Murphy RC, Kühn H, Hazen SL, et al. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem. 2010;285:6891-903. https://doi.org/10.1074/jbc.M109.078428.
Valentin E, Koduri RS, Scimeca JC, Carle G, Gelb MH, Lazdunski M, et al. Cloning and recombinant expression of a novel mouse-secreted phospholipase A2. J. Biol. Chem. 1999;274:19152-19160.
Yin H, Cox BE, Liu W, Porter NA, Morrow JD, Milne GL. Identification of intact oxidation products of glycerophospholipids in vitro and in vivo using negative ion electrospray ion trap mass spectrometry. J Mass Spectrom. 2009;44:672-80. https://doi.org/10.1002/jms.1542.
Contributed Indexing:
Keywords: LC/ESI-MS; autoxidation; in vitro hydrolysis; plasma lipoproteins; polyhydroxy PUFA-GPC; secretory PLA2
Substance Nomenclature:
0 (Fatty Acids, Nonesterified)
0 (Lipoproteins)
EC 3.1.1.4 (Phospholipases A2, Secretory)
0 (Fatty Acids)
0 (Oxylipins)
0 (Fatty Acids, Omega-3)
Entry Date(s):
Date Created: 20220917 Date Completed: 20230106 Latest Revision: 20230203
Update Code:
20240105
DOI:
10.1002/lipd.12359
PMID:
36114729
Czasopismo naukowe
It is widely accepted that unesterified polyunsaturated ω-6 and ω-3 fatty acids (PUFA) are converted through various lipoxygenases, cyclooxygenases, and cytochrome P450 enzymes to a range of oxygenated derivatives (oxylipins), among which the polyhydroxides of unesterified PUFA have recently been recognized as cell signaling molecules with anti-inflammatory and pro-resolving properties, known as specialized pro-resolving mediators (SPMs). This study investigates the mono-, di-, and trihydroxy 16:0/PUFA-GPCs, and the corresponding 16:0/SPM-GPC, in plasma lipoproteins. We describe the isolation and identification of mono-, di-, and trihydroxy AA, EPA, and DHA-GPC in plasma LDL, HDL, HDL3, and acute phase HDL using normal phase LC/ESI-MS, as previously reported. The lipoproteins contained variable amounts of the polyhydroxy-PUFA-GPC (0-10 nmol/mg protein), likely the product of lipid peroxidation and the action of various lipoxygenases and cytochrome P450 enzymes on both free fatty acids and the parent GPCs. Polyhydroxy-PUFA-GPC was hydrolyzed to variable extent (20%-80%) by the different secretory phospholipases A 2 (sPLA 2 s), with Group IIA sPLA 2 showing the lowest and Group X sPLA 2 the highest activity. Surprisingly, the trihydroxy-16:0/PUFA-GPC of APHDL was largely absent, while large amounts of unidentified material had migrated in the free fatty acid elution area. The free fatty acid mass spectra were consistent with that anticipated for branched chain polyhydroxy fatty acids. There was general agreement between the masses determined by LC/ESI-MS for the polyhydroxy PUFA-GPC and the masses calculated for the GPC equivalents of resolvins, protectins, and maresins using the fatty acid structures reported in the literature.
(© 2022 AOCS.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies