Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra.

Tytuł:
Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra.
Autorzy:
Romanowicz KJ; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
Kling GW; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
Źródło:
Environmental microbiology [Environ Microbiol] 2022 Dec; Vol. 24 (12), pp. 6220-6237. Date of Electronic Publication: 2022 Oct 03.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Oxford : Blackwell Science, 1999-
MeSH Terms:
Permafrost*
Microbiota*
Soil ; Tundra ; Soil Microbiology ; Arctic Regions
References:
Sci Rep. 2018 Jan 11;8(1):504. (PMID: 29323168)
FEMS Microbiol Ecol. 2019 Sep 1;95(9):. (PMID: 31429869)
Appl Environ Microbiol. 2019 Jul 18;85(15):. (PMID: 31152014)
PLoS One. 2013 May 31;8(5):e64659. (PMID: 23741360)
FEMS Microbiol Ecol. 2014 Aug;89(2):426-41. (PMID: 24819653)
Curr Biol. 2004 Jan 6;14(1):R9-10. (PMID: 14711425)
Nature. 2015 May 14;521(7551):208-12. (PMID: 25739499)
Ecology. 2006 Aug;87(8):2068-79. (PMID: 16937646)
FEMS Microbiol Ecol. 2007 Feb;59(2):428-35. (PMID: 17313585)
Front Microbiol. 2019 Jun 27;10:1442. (PMID: 31316487)
Nat Biotechnol. 2019 Aug;37(8):852-857. (PMID: 31341288)
Environ Microbiol Rep. 2014 Dec;6(6):631-9. (PMID: 25756117)
Environ Microbiol. 2016 May;18(5):1403-14. (PMID: 26271760)
Glob Chang Biol. 2021 Jul;27(14):3218-3229. (PMID: 33336478)
Mol Ecol. 2015 Jan;24(1):222-34. (PMID: 25424441)
FEMS Microbiol Ecol. 2018 Aug 1;94(8):. (PMID: 29912311)
Ecology. 2006 Jul;87(7):1659-70. (PMID: 16922317)
Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2507-16. (PMID: 25918393)
Can J Microbiol. 2011 Apr;57(4):303-15. (PMID: 21491982)
Nat Rev Microbiol. 2014 Jun;12(6):414-25. (PMID: 24814065)
Nat Methods. 2016 Jul;13(7):581-3. (PMID: 27214047)
ISME J. 2019 May;13(5):1345-1359. (PMID: 30692629)
Syst Appl Microbiol. 2019 Jan;42(1):54-66. (PMID: 30616913)
Front Microbiol. 2015 Mar 16;6:197. (PMID: 25852660)
ISME J. 2014 Apr;8(4):841-53. (PMID: 24335828)
Appl Environ Microbiol. 2005 Oct;71(10):5710-8. (PMID: 16204479)
Appl Environ Microbiol. 2019 Mar 22;85(7):. (PMID: 30683748)
J Basic Microbiol. 2017 Dec;57(12):1018-1036. (PMID: 28940222)
Environ Microbiol. 2022 Dec;24(12):6220-6237. (PMID: 36135820)
Glob Chang Biol. 2015 Apr;21(4):1407-21. (PMID: 25363193)
Environ Microbiol. 2018 Dec;20(12):4328-4342. (PMID: 29971895)
Nat Commun. 2018 Feb 22;9(1):777. (PMID: 29472560)
Environ Microbiol. 2010 Nov;12(11):2998-3006. (PMID: 20561020)
Environ Microbiol. 2007 Apr;9(4):954-64. (PMID: 17359267)
ISME J. 2010 Sep;4(9):1206-14. (PMID: 20393573)
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. (PMID: 23193283)
ISME J. 2017 Oct;11(10):2305-2318. (PMID: 28696425)
ISME J. 2018 Sep;12(9):2129-2141. (PMID: 29875436)
Appl Environ Microbiol. 2015 Dec;81(23):8066-75. (PMID: 26386054)
Appl Environ Microbiol. 2010 Feb;76(4):999-1007. (PMID: 20023089)
Nature. 2011 Nov 06;480(7377):368-71. (PMID: 22056985)
FEMS Microbiol Ecol. 2021 Jan 26;97(2):. (PMID: 33332530)
PLoS One. 2014 Jan 08;9(1):e84761. (PMID: 24416279)
Environ Microbiol Rep. 2018 Dec;10(6):611-625. (PMID: 30028082)
FEMS Microbiol Ecol. 2021 Mar 8;97(3):. (PMID: 33452882)
Environ Microbiol. 2010 Jul;12(7):1842-54. (PMID: 20236166)
Front Microbiol. 2014 Oct 02;5:516. (PMID: 25324836)
Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14401-5. (PMID: 17728401)
PLoS One. 2022 Feb 24;17(2):e0264443. (PMID: 35202411)
J Microbiol. 2016 Nov;54(11):713-723. (PMID: 27796925)
Substance Nomenclature:
0 (Soil)
Entry Date(s):
Date Created: 20220922 Date Completed: 20221220 Latest Revision: 20230415
Update Code:
20240104
PubMed Central ID:
PMC10092252
DOI:
10.1111/1462-2920.16218
PMID:
36135820
Czasopismo naukowe
Climate warming has increased permafrost thaw in arctic tundra and extended the duration of annual thaw (number of thaw days in summer) along soil profiles. Predicting the microbial response to permafrost thaw depends largely on knowing how increased thaw duration affects the composition of the soil microbiome. Here, we determined soil microbiome composition from the annually thawed surface active layer down through permafrost from two tundra types at each of three sites on the North Slope of Alaska, USA. Variations in soil microbial taxa were found between sites up to ~90 km apart, between tundra types, and between soil depths. Microbiome differences at a site were greatest across transitions from thawed to permafrost depths. Results from correlation analysis based on multi-decadal thaw surveys show that differences in thaw duration by depth were significantly, positively correlated with the abundance of dominant taxa in the active layer and negatively correlated with dominant taxa in the permafrost. Microbiome composition within the transition zone was statistically similar to that in the permafrost, indicating that recent decades of intermittent thaw have not yet induced a shift from permafrost to active-layer microbes. We suggest that thaw duration rather than thaw frequency has a greater impact on the composition of microbial taxa within arctic soils.
(© 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies