Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Multiple Parallel Fusion Network for Predicting Protein Subcellular Localization from Stimulated Raman Scattering (SRS) Microscopy Images in Living Cells.

Tytuł:
Multiple Parallel Fusion Network for Predicting Protein Subcellular Localization from Stimulated Raman Scattering (SRS) Microscopy Images in Living Cells.
Autorzy:
Wei Z; Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Liu W; Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Yu W; Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Liu X; Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Yan R; Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Liu Q; Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Guo Q; Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.; School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Źródło:
International journal of molecular sciences [Int J Mol Sci] 2022 Sep 16; Vol. 23 (18). Date of Electronic Publication: 2022 Sep 16.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, [2000-
MeSH Terms:
Microscopy*/methods
Spectrum Analysis, Raman*/methods
Nonlinear Optical Microscopy/methods ; Protein Transport ; Proteins/metabolism
References:
Sci Rep. 2016 Jun 21;6:28087. (PMID: 27323846)
Sci Rep. 2016 Mar 15;6:21471. (PMID: 26975219)
Nat Protoc. 2008;3(2):153-62. (PMID: 18274516)
Science. 2019 Nov 15;366(6467):827-832. (PMID: 31727828)
Mol Biosyst. 2017 Mar 28;13(4):785-795. (PMID: 28247893)
Sci Rep. 2017 Sep 29;7(1):12454. (PMID: 28963483)
Nat Methods. 2022 Aug;19(8):995-1003. (PMID: 35879608)
Nat Methods. 2017 Apr;14(4):403-406. (PMID: 28218899)
Neuron. 2014 Dec 17;84(6):1157-69. (PMID: 25433638)
Chemphyschem. 2012 Mar;13(4):1054-9. (PMID: 22368112)
Anal Biochem. 2007 Nov 1;370(1):1-16. (PMID: 17698024)
PLoS Comput Biol. 2022 Jan 18;18(1):e1009155. (PMID: 35041651)
Biophys Rev. 2022 Apr 6;14(2):463-481. (PMID: 35528030)
Int J Mol Sci. 2020 Mar 27;21(7):. (PMID: 32230871)
Sci Rep. 2022 Jan 10;12(1):342. (PMID: 35013443)
Bioinformatics. 2022 Feb 25;:. (PMID: 35212728)
Int J Mol Sci. 2022 Mar 29;23(7):. (PMID: 35409140)
Biomed Opt Express. 2019 Jul 10;10(8):3860-3874. (PMID: 31452980)
Lab Chip. 2020 Oct 21;20(20):3696-3708. (PMID: 32935707)
PLoS Comput Biol. 2019 Sep 3;15(9):e1007348. (PMID: 31479439)
Bioinformatics. 2019 Jun 1;35(12):2141-2149. (PMID: 30398548)
Science. 2001 May 18;292(5520):1401-3. (PMID: 11360991)
Nat Methods. 2022 Sep;19(9):1097-1108. (PMID: 36068320)
Bioinformatics. 2013 Aug 15;29(16):2032-40. (PMID: 23740749)
Biomed Opt Express. 2021 Apr 16;12(5):2759-2772. (PMID: 34123502)
Research (Wash D C). 2022 Jan 19;2022:9869518. (PMID: 35136860)
BMC Bioinformatics. 2019 Jun 28;20(1):360. (PMID: 31253078)
Lab Chip. 2017 Jul 11;17(14):2426-2434. (PMID: 28627575)
Biochem Biophys Res Commun. 2004 Aug 6;320(4):1236-9. (PMID: 15249222)
J Phys Chem Lett. 2020 Oct 15;11(20):8573-8578. (PMID: 32914982)
Nature. 2022 Mar;603(7902):736-742. (PMID: 35264794)
Cytometry A. 2020 Mar;97(3):226-240. (PMID: 31981309)
Nat Mach Intell. 2021 Apr;3:306-315. (PMID: 34676358)
Int J Mol Sci. 2022 Jul 14;23(14):. (PMID: 35887125)
Nat Methods. 2018 Nov;15(11):917-920. (PMID: 30224672)
IEEE Trans Image Process. 2004 Apr;13(4):600-12. (PMID: 15376593)
Sci Rep. 2020 Oct 20;10(1):17866. (PMID: 33082406)
Sci Rep. 2021 Mar 24;11(1):6728. (PMID: 33762607)
Cytometry A. 2019 Mar;95(3):302-308. (PMID: 30508271)
BMC Bioinformatics. 2018 Oct 3;19(1):365. (PMID: 30285608)
J Cell Sci. 2011 Oct 15;124(Pt 20):3381-92. (PMID: 22010196)
Sci Rep. 2019 Sep 17;9(1):13467. (PMID: 31530889)
Nat Methods. 2019 Jan;16(1):67-70. (PMID: 30559429)
Nat Mach Intell. 2021 Sep;3(9):799-811. (PMID: 34541455)
Theranostics. 2019 Apr 13;9(9):2541-2554. (PMID: 31131052)
Bioinformatics. 2017 Nov 01;33(21):3387-3395. (PMID: 29036616)
Contributed Indexing:
Keywords: deep learning; label-free live cell imaging; multiple parallel fusion network; nonlinear optical microscopy; protein subcellular localization
Substance Nomenclature:
0 (Proteins)
Entry Date(s):
Date Created: 20220923 Date Completed: 20220926 Latest Revision: 20220928
Update Code:
20240104
PubMed Central ID:
PMC9504098
DOI:
10.3390/ijms231810827
PMID:
36142736
Czasopismo naukowe
Stimulated Raman Scattering Microscopy (SRS) is a powerful tool for label-free detailed recognition and investigation of the cellular and subcellular structures of living cells. Determining subcellular protein localization from the cell level of SRS images is one of the basic goals of cell biology, which can not only provide useful clues for their functions and biological processes but also help to determine the priority and select the appropriate target for drug development. However, the bottleneck in predicting subcellular protein locations of SRS cell imaging lies in modeling complicated relationships concealed beneath the original cell imaging data owing to the spectral overlap information from different protein molecules. In this work, a multiple parallel fusion network, MPFnetwork, is proposed to study the subcellular locations from SRS images. This model used a multiple parallel fusion model to construct feature representations and combined multiple nonlinear decomposing algorithms as the automated subcellular detection method. Our experimental results showed that the MPFnetwork could achieve over 0.93 dice correlation between estimated and true fractions on SRS lung cancer cell datasets. In addition, we applied the MPFnetwork method to cell images for label-free prediction of several different subcellular components simultaneously, rather than using several fluorescent labels. These results open up a new method for the time-resolved study of subcellular components in different cells, especially cancer cells.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies