Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Investigation of the best possible methods for wind turbine blade waste management by using GIS and FAHP: Turkey case.

Tytuł:
Investigation of the best possible methods for wind turbine blade waste management by using GIS and FAHP: Turkey case.
Autorzy:
Ozturk S; Department of Environmental Engineering, Bursa Technical University, Bursa, 16310, Turkey. .
Karipoglu F; Department of Energy Systems Engineering, Izmir Institute of Technology, Izmir, 35430, Turkey.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Feb; Vol. 30 (6), pp. 15020-15033. Date of Electronic Publication: 2022 Sep 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Geographic Information Systems*
Waste Management*
Turkey ; Analytic Hierarchy Process
References:
Albers H, Greiner S, Seifert H, Kuehne U (2009) Recycling of wind turbine rotor blades. Fact or fiction? Recycling von Rotorblättern aus Windenergieanlagen. Fakt oder Fiktion? DEWI-Magazin 34:32–41.
Aparcana S, Salhofer S (2013) Application of a methodology for the social life cycle assessment of recycling systems in low-income countries: three Peruvian case studies. Int J Life Cycle Assess 18(5):1116–1128. (PMID: 10.1007/s11367-013-0559-3)
Aydin NY, Kentel E, Duzgun S (2010) GIS-based environmental assessment of wind energy systems for spatial planning: a case study from Western Turkey. Renew Sustain Energy Rev 14(1):364–373. (PMID: 10.1016/j.rser.2009.07.023)
Balusa BC, Gorai AK (2019) Sensitivity analysis of fuzzy-analytic hierarchical process (FAHP) decision-making model in selection of underground metal mining method. J Sustain Mining 18(1):8–17. (PMID: 10.1016/j.jsm.2018.10.003)
Bank L, Delaney E, Mckinley J, Gentry R, Leahy P (2021) Defining the landscape for wind blades at the end of service life. Composites World. https://www.compositesworld.com/articles/defining-the-landscape-for-wind-blades-at-the-end-of-service-life . Accessed 20 Aug 2022.
Beauson J, Lilholt H, Brøndsted P (2014) Recycling solid residues recovered from glass fibre-reinforced composites — a review applied to wind turbine blade materials. J Reinf Plast Compos. https://doi.org/10.1177/0731684414537131. (PMID: 10.1177/0731684414537131)
Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Sets Syst 17:233–247. (PMID: 10.1016/0165-0114(85)90090-9)
Chan HK, Sun X, Chung SH (2019) When should a fuzzy analytic hierarchy process be used instead of an analytic hierarchy process? Decis Support Syst 125:113–125. https://doi.org/10.1016/j.dss.2019.113114. (PMID: 10.1016/j.dss.2019.113114)
Chang DY (1996) Applications of the extent analysis method of fuzzy AHP. Eur J Oper Res 95(3):649–655. (PMID: 10.1016/0377-2217(95)00300-2)
Darko A, Chan APC, Ameyaw EE, Owusu EK, Pärn E, Edwards DJ (2019) Review of application of analytic hierarchy process (AHP) in construction. Int J Constr Manag 19(5):436–452.
Delaney EL, McKinley JM, Megarry W, Graham C, Leahy PG, Bank LC, Gentry R (2021) An integrated geospatial approach for repurposing wind turbine blades. Resour Conserv Recycl 170:105601. (PMID: 10.1016/j.resconrec.2021.105601)
Deeney P, Nagle AJ, Gough F, Lemmertz H, Delaney EL, McKinley JM, Mullally G (2021) End-of-Life alternatives for wind turbine blades: sustainability Indices based on the UN sustainable development goals. Resour Conserv Recycl 171:105642. (PMID: 10.1016/j.resconrec.2021.105642)
Deng H (1999) Multicriteria analysis with fuzzy pairwise comparison. Int J Approx Reason 21:215–231. https://doi.org/10.1016/S0888-613X(99)00025-0. (PMID: 10.1016/S0888-613X(99)00025-0)
Diaz H, Guedes Soares C (2022) A novel multi-criteria decision-making model to evaluate floating wind farm locations. Renew Energy 185:431–454. https://doi.org/10.1016/j.renene.2021.12.014. (PMID: 10.1016/j.renene.2021.12.014)
Ekincioglu O, Gurgun AP, Engin Y, Tarhan M, Kumbaracibasi S (2013) Approaches for sustainable cement production—a case study from Turkey. Energy Build 66:136–142. (PMID: 10.1016/j.enbuild.2013.07.006)
Fox T. (2016) Recycling wind turbine blade composite material as aggregate in concrete.” Graduate Theses and Dissertations. https://doi.org/10.31274/etd-180810-4761 .
Genç MS, Karipoğlu F, Koca K, Azgın ŞT (2021) Suitable site selection for offshore wind farms in Turkey’s seas: GIS-MCDM based approach. Earth Sci Inf 14(3):1213–1225. (PMID: 10.1007/s12145-021-00632-3)
Global Wind Energy Council, 2022. Global wind report 2022. https://gwec.net/wp-content/uploads/2022/04/Annual-Wind-Report-2022_screen_final_April.pdf . (accessed from 15 June 2022).
Jensen JP, Skelton K (2018) Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy. Renew Sustain Energy Rev 97:165–176. https://doi.org/10.1016/j.rser.2018.08.041. (PMID: 10.1016/j.rser.2018.08.041)
Kalkanis K, Psomopoulos CS, Kaminaris S, Ioannidis G, Pachos P (2019) Wind turbine blade composite materials — end of life treatment methods. Energy Procedia, Technologies and Materials for Renewable Energy. Environ Sustainability (TMREES) 157:1136–1143. https://doi.org/10.1016/j.egypro.2018.11.281. (PMID: 10.1016/j.egypro.2018.11.281)
Kaplan YA (2015) Overview of wind energy in the world and assessment of current wind energy policies in Turkey. Renew Sustain Energy Rev 43:562–568. (PMID: 10.1016/j.rser.2014.11.027)
Kaygusuz K (2010) Wind energy status in renewable electrical energy production in Turkey. Renew Sustain Energy Rev 14(7):2104–2112. (PMID: 10.1016/j.rser.2010.03.022)
Lichtenegger G, Rentizelas AA, Trivyza N, Siegl S (2020) Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste Manage 106:120–131. https://doi.org/10.1016/j.wasman.2020.03.018. (PMID: 10.1016/j.wasman.2020.03.018)
Liou TS, Wang MJ (1985) Ranking fuzzy numbers with integral value. Fuzzy Sets Syst 50:247–255. (PMID: 10.1016/0165-0114(92)90223-Q)
Liu P, Barlow CY (2017) Wind turbine blade waste in 2050. Waste Manage 62:229–240. https://doi.org/10.1016/j.wasman.2017.02.007. (PMID: 10.1016/j.wasman.2017.02.007)
Liu P, Meng F, Barlow CY (2019) Wind turbine blade end-of-life options: an eco-audit comparison. J Clean Prod 212:1268–1281. https://doi.org/10.1016/j.jclepro.2018.12.043. (PMID: 10.1016/j.jclepro.2018.12.043)
Mamanpush SH, Li H, Englund K, Tabatabaei AT (2018) Recycled wind turbine blades as a feedstock for second generation composites. Waste Manage 76:708–714. https://doi.org/10.1016/j.wasman.2018.02.050. (PMID: 10.1016/j.wasman.2018.02.050)
Mishnaevsky L, Branner K, Petersen HN, Beauson J, McGugan M, Sørensen BF (2017) Materials for wind turbine blades: an overview. Materials 10(11):1285. https://doi.org/10.3390/ma10111285 .
Nagle AJ, Delaney EL, Bank LC, Leahy PG (2020) A comparative life cycle assessment between landfilling and co-processing of waste from decommissioned Irish wind turbine blades. J Clean Prod 277. https://doi.org/10.1016/j.jclepro.2020.123321.
Nanda S, Berruti F (2021) Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett 19(2):1433–1456. (PMID: 10.1007/s10311-020-01100-y)
Nas B, Cay T, Iscan F, Berktay A (2010) Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environ Monit Assess 160(1):491–500. (PMID: 10.1007/s10661-008-0713-8)
Nordex, 2018. Use wind intelligently. Sustainability report.  https://www.nordex-online.com/wp-content/uploads/sites/2/2019/11/190514_Nordex_NHB_en_2018_s.pdf (accessed 15 February 20219.
Özdemir Ü, Altinpinar İ, Demirel FB (2018) A MCDM approach with fuzzy AHP method for occupational accidents on board. TransNav 12: 93–98. https://doi.org/10.12716/1001.12.01.10.
Özdağoğlu A (2008) Bulanık AHP yaklaşımında duyarlılık analizleri: yeni bir hammadde tedarikçisinin çözüme eklenmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 7(13):51–72.
Öztürk S, Karipoğlu F (2022) Determining suitable container ports for offshore wind farms based on geographical information system-analytic hierarchy process: a case study of Marmara Sea. Arab J Geosci 15(1):1–12. (PMID: 10.1007/s12517-021-09232-3)
Psomopoulos CS, Kalkanis K, Kaminaris S, Ioannidis GC, Pachos P (2019) A review of the potential for the recovery of wind turbine blade waste materials. Recycling 4. https://doi.org/10.3390/recycling4010007.
Putra M, Andryana S, Gunaryati F, Gunaryati A (2018) Fuzzy analytical hierarchy process method to determine the quality of gemstones. Adv Fuzzy Syst 1–6. https://doi.org/10.1155/2018/9094380.
Ramirez-Tejeda K, Turcotte DA, Pike S (2017) Unsustainable wind turbine blade disposal practices in the United States. New Solutions. J Environ Occup Health Policy 26:581–598. https://doi.org/10.1177/1048291116676098. (PMID: 10.1177/1048291116676098)
Taherdoost H (2017) Decision making using the analytic hierarchy process (AHP): a step by step approach. International Journal of Economics and Management Systems 2: 244-246. https://ssrn.com/abstract=3224206.
Tiryaki F, Ahlatcioglu B (2009) Fuzzy portfolio selection using fuzzy analytic hierarchy process. Inf Sci 2:53–69. https://doi.org/10.1016/j.ins.2008.07.023. (PMID: 10.1016/j.ins.2008.07.023)
Tükenmez M, Demireli E (2012) Renewable energy policy in Turkey with the new legal regulations. Renewable Energy 39(1):1–9. (PMID: 10.1016/j.renene.2011.07.047)
Turkish Wind Energy Association, 2020. Wind energy statistics report. https://tureb.com.tr//yayinlar/turkiye-ruzgar-enerjisi-istatistik-raporlari/5 (accessed 10 February 2021).
Vahidnia MH, Alesheikh AA, Alimohammadi A (2009) Hospital site selection using fuzzy AHP and its derivatives. J Environ Manage. 90(10):3048–56. https://doi.org/10.1016/j.jenvman.2009.04.010. (PMID: 10.1016/j.jenvman.2009.04.010)
Vaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169:1–29. (PMID: 10.1016/j.ejor.2004.04.028)
Vestas (2020) Material use turbines. https://www.vestas.com/~/media/vestas/about/sustainability/pdfs/material%20use%20brochure%20v1%20dec%202014.pdf . (accessed 12 February 2021).
Wang ZJ, Tong X (2016) Consistency analysis and group decision making based on triangular fuzzy additive reciprocal preference relations. Inf Sci 361:29–47. https://doi.org/10.1016/j.ins.2016.04.047. (PMID: 10.1016/j.ins.2016.04.047)
Zhu K (2014) Fuzzy analytic hierarchy process. Fallacy of the popular methods. Eur J Oper Res 236:209–2017. https://doi.org/10.1016/j.ejor.2013.10.034. (PMID: 10.1016/j.ejor.2013.10.034)
Contributed Indexing:
Keywords: FAHP; GIS; Turkey; Wind turbine blade waste
Entry Date(s):
Date Created: 20220928 Date Completed: 20230210 Latest Revision: 20230210
Update Code:
20240105
DOI:
10.1007/s11356-022-23256-6
PMID:
36168016
Czasopismo naukowe
The aim of this study is to present the status and projections of wind turbine blade retirement in Turkey; to investigate the number of retiring WT blades in the regional, manufacturer, and material aspects; and to discuss the management methods for retired WT blades. To determine the best possible wind turbine blade waste management methods for Turkey, a combined application of Geographical Information Systems (GIS) and the Fuzzy Analytical Hierarchy Process (FAHP) is used in this study. It is found that around nine thousand WT blades will become waste between 2020 and 2039 in Turkey, corresponding to around 80,500 tons of waste. On average, 52,325 tons of glass/carbon and 28,175 tons of polymers will be accumulated between 2020 and 2039 from wind turbine blades. More than half of the WT blade waste will come from two WT manufacturers, namely, Enercon and Nordex. Aegean and Marmara regions will provide 74% of the blade waste, where 33% of them will be 2 MW and 2.5 MW sizes of WT blades. Furthermore, a case study is applied to Izmir city to demonstrate the results of FAHP for finding the best available method to dispose of WT blades. The results show that using blade waste as filling material is the best alternative, while waste-to-energy is the last favorable option for blade waste management. Finally, sensitivity analyses are applied to demonstrate the robustness of the results for the inclusion of new alternatives and the bias of experts' judgments.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies