Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

High-resolution MRI to noninvasively characterize drainage around the carotid artery into the cervical lymph nodes.

Tytuł:
High-resolution MRI to noninvasively characterize drainage around the carotid artery into the cervical lymph nodes.
Autorzy:
Keser Z; Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.
Smith G; Department of Radiology, College of Medicine, University of Florida, Gainesville, Florida, USA.
Cagil E; Department of Neurosurgery, Ankara Numune Training and Research Hospital, Ankara, Turkey.
Tufan F; Geriatrician (PP), Silivrikapi Mh. Hisaralti Cd, Istanbul, Turkey.
Albayram O; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA.
Albayram MS; Department of Radiology, College of Medicine, University of Florida, Gainesville, Florida, USA.
Źródło:
Journal of neuroimaging : official journal of the American Society of Neuroimaging [J Neuroimaging] 2023 Jan; Vol. 33 (1), pp. 102-108. Date of Electronic Publication: 2022 Oct 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2009- : Hoboken, NJ : Wiley
Original Publication: Boston, Mass. : Little, Brown and Co., c1991-
MeSH Terms:
Lymph Nodes*
Magnetic Resonance Imaging*/methods
Male ; Female ; Humans ; Adolescent ; Young Adult ; Adult ; Middle Aged ; Aged ; Aged, 80 and over ; Carotid Artery, Common ; Brain
References:
Klostranec JM, Vucevic D, Bhatia KD, et al. Current concepts in intracranial interstitial fluid transport and the glymphatic system: part II-imaging techniques and clinical applications. Radiology 2021;301:516-32.
Carare RO, Aldea R, Agarwal N, et al. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of vascular Professional Interest Area (PIA): cerebrovascular disease and the failure of elimination of amyloid-β from the brain and retina with age and Alzheimer's disease-opportunities for therapy. Alzheimers Dement 2020;12:e12053.
Mato M, Ookawara S. Influences of age and vasopressin on the uptake capacity of fluorescent granular perithelial cells (FGP) of small cerebral vessels of the rat. Am J Anat 1981;162:45-53.
Bulat M, Klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 2011;65:99-112.
Gouveia-Freitas K, Bastos-Leite AJ. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology 2021;63:1581-97.
Weller RO, Subash M, Preston SD, et al. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol 2008;18:253-66.
Mestre H, Kostrikov S, Mehta RI, et al. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci 2017;131:2257-74.
Agarwal N, Carare RO. Cerebral vessels: an overview of anatomy, physiology, and role in the drainage of fluids and solutes. Front Neurol 2020;11:611485.
Diem AK, Macgregor Sharp M, Gatherer M, et al. Arterial pulsations cannot drive intramural periarterial drainage: significance for Aβ drainage. Front Neurosci 2017;11:475.
Diem AK, Carare RO, Weller RO, et al. A control mechanism for intra-mural peri-arterial drainage via astrocytes: how neuronal activity could improve waste clearance from the brain. PLoS ONE 2018;13:e0205276.
Aldea R, Weller RO, Wilcock DM, et al. Cerebrovascular smooth muscle cells as the drivers of intramural periarterial drainage of the brain. Front Aging Neurosci 2019;11:1.
Kutkut I, Meens MJ, Mckee TA, et al. Lymphatic vessels: an emerging actor in atherosclerotic plaque development. Eur J Clin Invest 2015;45:100-8.
Ueno M, Chiba Y, Murakami R, et al. Disturbance of intracerebral fluid clearance and blood-brain barrier in vascular cognitive impairment. Int J Mol Sci 2019;20:2600.
Macgregor Sharp M, Saito S, Keable A, et al. Demonstrating a reduced capacity for removal of fluid from cerebral white matter and hypoxia in areas of white matter hyperintensity associated with age and dementia. Acta Neuropathol Commun 2020;8:131.
Weller RO, Galea I, Carare RO, et al. Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 2010;17:295-306.
Varatharaj A, Carare RO, Weller RO, et al. Gadolinium enhancement of cranial nerves: implications for interstitial fluid drainage from brainstem into cranial nerves in humans. Proc Natl Acad Sci USA 2021;118:e2106331118.
Albayram MS, Smith G, Tufan F, et al. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun 2022;13:203.
Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015;212:991-9.
Chen X, Liu X, Koundal S, et al. Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nature Aging 2022;2:214-23.
Clapham R, O'Sullivan E, Weller RO, et al. Cervical lymph nodes are found in direct relationship with the internal carotid artery: significance for the lymphatic drainage of the brain. Clin Anat 2010;23:43-7.
Zolla V, Nizamutdinova IT, Scharf B, et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 2015;14:582-94.
Gashev AA, Chatterjee V. Aged lymphatic contractility: recent answers and new questions. Lymphat Res Biol 2013;11:2-13.
Carare RO, Bernardes-Silva M, Newman TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 2008;34:131-44.
Arbel-Ornath M, Hudry E, Eikermann-Haerter K, et al. Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer's disease mouse models. Acta Neuropathol 2013;126:353-64.
Eide PK, Ringstad G. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol Open 2015;4:2058460115609635.
Deike-Hofmann K, Reuter J, Haase R, et al. Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted. Invest Radiol 2019;54:229-37.
Jacob L, De Brito Neto J, Lenck S, et al. Conserved meningeal lymphatic drainage circuits in mice and humans. J Exp Med 2022;219:e20220035.
Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol 2017;35:172-8.
Wong SM, Backes WH, Drenthen GS, et al. Spectral diffusion analysis of intravoxel incoherent motion MRI in cerebral small vessel disease. J Magn Reson Imaging 2020;51:1170-80.
Ahn JH, Cho H, Kim J-H, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 2019;572:62-66.
Johnston M, Armstrong D, Koh L. Possible role of the cavernous sinus veins in cerebrospinal fluid absorption. Cerebrospinal Fluid Res 2007;4:3.
Contributed Indexing:
Keywords: brain; glymphatics; lymphatics; periarterial drainage
Entry Date(s):
Date Created: 20221003 Date Completed: 20230116 Latest Revision: 20230131
Update Code:
20240105
DOI:
10.1111/jon.13056
PMID:
36184887
Czasopismo naukowe
Background and Purpose: Previous studies have proposed multiple parallel channels for waste clearance from the brain, though many gaps remain in our understanding of these systems. In this study, we examined periarterial fluid drainage around intracranial and extracranial segments of the internal carotid arteries (ICAs) from the brain into the cervical lymph nodes using a noninvasive and clinical-based method.
Methods: Eighty-one subjects (45 females, aged 15-80 years old) with nonlesioned epilepsy underwent high-resolution 3-dimensional T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI. We utilized a noninvasive and clinical-based method with a manual semiautomated approach to characterize the periarterial lymphatic system's maximum thickness and signal intensities along the ICAs using high-resolution 3-dimensional FLAIR imaging. We conducted group comparisons and correlation analyses to investigate sex- and age-based trends. Results were corrected with Bonferroni's test for multiple comparisons, and we performed power analysis for sample size calculations.
Results: Using high-resolution FLAIR images, we show evidence that fluid drainage emerges around the ICA petrous segment and joins lymphatic flow from cranial nerves in the upper neck, with this flow ultimately draining into the cervical lymph nodes bilaterally. Lymphatic signal at the petrous segment level was significantly thinner in females compared to males bilaterally (w = 413, p = .0001 on the right, w = 356, p < .0001 on the left). Lymphatic drainage around the petrous segments of the ICAs bilaterally was thicker with age in males but not in females.
Conclusions: We describe the in vivo high-resolution imaging characteristics of periarterial fluid drainage along the vessel walls of ICAs. This represents a potentially major channel for brain waste clearance. We also report interesting sex- and age-based trends in these structures within our cohort.
(© 2022 American Society of Neuroimaging.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies