Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The role of IL-1β during human immunodeficiency virus type 1 infection.

Tytuł:
The role of IL-1β during human immunodeficiency virus type 1 infection.
Autorzy:
Yaseen MM; Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan.
Abuharfeil NM; Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan.
Darmani H; Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan.
Źródło:
Reviews in medical virology [Rev Med Virol] 2023 Jan; Vol. 33 (1), pp. e2400. Date of Electronic Publication: 2022 Oct 09.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Original Publication: Chichester, West Sussex, England : Wiley, c1991-
MeSH Terms:
HIV Infections*/immunology
HIV Infections*/transmission
HIV-1*/physiology
Interleukin-1beta*/metabolism
Humans ; Cytokines ; Infectious Disease Transmission, Vertical
References:
Alqudah MAY, Yaseen MMM, Yaseen MMS. HIV-1 strategies to overcome the immune system by evading and invading innate immune system. HIV & AIDS Rev. 2016;15:1-12. https://doi.org/10.1016/j.hivar.2015.07.004.
Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol. 2018;163:1-21. https://doi.org/10.1007/s00705-017-3569-9.
Abuharfeil NM, Yaseen MM, Alsheyab FM. Harnessing antibody-dependent cellular cytotoxicity to control HIV-1 infection. ACS Infect Dis. 2019;5(2):158-176. https://doi.org/10.1021/acsinfecdis.8b00167.
Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF. Innate immunity to adenovirus. Hum Gene Ther. 2014;25(4):265-284. https://doi.org/10.1089/hum.2014.001.
Malavige GN, Jeewandara C, Ogg GS. Dysfunctional innate immune responses and severe dengue. Front Cell Infect Microbiol. 2020;10:590004. https://doi.org/10.3389/fcimb.2020.590004.
Zhou Y. Immunobiology and host response to HEV. Adv Exp Med Biol. 2016;948:113-141.
Amin I, Vajeeha A, Younas S, et al. HSV-1 infection: role of viral proteins and cellular receptors. Crit Rev Eukaryot Gene Expr. 2019;29(5):461-469. https://doi.org/10.1615/critreveukaryotgeneexpr.2019025561.
Nw M, Ga A, Aa EF, Am H. Galectin-3 and Interleukin-17: a potential role in the pathogenesis of human papilloma virus infection. J Cosmet Dermatol. 2021.
Rossini G, Landini MP, Gelsomino F, Sambri V, Varani S. Innate host responses to West Nile virus: implications for central nervous system immunopathology. World J Virol. 2013;2:49-56. https://doi.org/10.5501/wjv.v2.i2.49.
Sireci G, Badami GD, Di Liberto D, et al. Recent advances on the innate immune response to Coxiella burnetii. Front Cell Infect Microbiol. 2021;11:754455. https://doi.org/10.3389/fcimb.2021.754455.
Ward RA, Thompson GR, 3rd, Villani AC, et al. The known unknowns of the immune response to Coccidioides. J Fungi (Basel). 2021;7(5):377. https://doi.org/10.3390/jof7050377.
Solaymani-Mohammadi S, Singer SM. Giardia duodenalis: the double-edged sword of immune responses in giardiasis. Exp Parasitol. 2010;126(3):292-297. https://doi.org/10.1016/j.exppara.2010.06.014.
Puthia M, Ambite I, Cafaro C, et al. IRF7 inhibition prevents destructive innate immunity-A target for nonantibiotic therapy of bacterial infections. Sci Transl Med. 2016;8(336):336ra359. https://doi.org/10.1126/scitranslmed.aaf1156.
Wolff CH. Innate immunity and the pathogenicity of inhaled microbial particles. Int J Biol Sci. 2011;7(3):261-268. https://doi.org/10.7150/ijbs.7.261.
Loske J, Rohmel J, Lukassen S, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat Biotechnol. 2022;40(3):319-324. https://doi.org/10.1038/s41587-021-01037-9.
Paludan SR, Mogensen TH. Innate immunological pathways in COVID-19 pathogenesis. Sci Immunol. 2022;7(67):eabm5505. https://doi.org/10.1126/sciimmunol.abm5505.
Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 2022;23(2):165-176. https://doi.org/10.1038/s41590-021-01091-0.
Neeland MR, Bannister S, Clifford V, et al. Innate cell profiles during the acute and convalescent phase of SARS-CoV-2 infection in children. Nat Commun. 2021;12(1):1084. https://doi.org/10.1038/s41467-021-21414-x.
Pierce CA, Sy S, Galen B, et al. Natural mucosal barriers and COVID-19 in children. JCI Insight. 2021;6. https://doi.org/10.1172/jci.insight.148694.
Gu W, Gan H, Ma Y, et al. The molecular mechanism of SARS-CoV-2 evading host antiviral innate immunity. Virol J. 2022;19(1):49. https://doi.org/10.1186/s12985-022-01783-5.
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol. 2020;10(9):200111. https://doi.org/10.1098/rsob.200111.
Yaseen MM, Abuharfeil NM, Darmani H. MDSCs AND THE PATHOGENESIS OF HIV INFECTION. Open Biol. 2021.
Tay MZ, Wiehe K, Pollara J. Antibody-dependent cellular phagocytosis in antiviral immune responses. Front Immunol. 2019;10:332. https://doi.org/10.3389/fimmu.2019.00332.
Yaseen MM, Abuharfeil NM, Darmani H. The impact of MDSCs on the efficacy of preventive and therapeutic HIV vaccines. Cell Immunol. 2021:369. https://doi.org/10.1016/j.cellimm.2021.104440.
Mohammad Yaseen M, Mohammad Abuharfeil N, Darmani H. T-cell evasion and invasion during HIV-1 infection: the role of HIV-1 Tat protein. Cell Immunol. 2022;377:104554. https://doi.org/10.1016/j.cellimm.2022.104554.
Machmach K, Leal M, Gras C, et al. Plasmacytoid dendritic cells reduce HIV production in elite controllers. J Virol. 2012;86(8):4245-4252. https://doi.org/10.1128/jvi.07114-11.
Herbeuval JP, Smith N, Theze J. Characteristics of plasmacytoid dendritic cell and CD4+ T cell in HIV elite controllers. Clin Dev Immunol. 2012;2012:869505-869508. https://doi.org/10.1155/2012/869505.
Walker WE, Kurscheid S, Joshi S, et al. Increased levels of macrophage inflammatory proteins result in resistance to R5-tropic HIV-1 in a subset of elite controllers. J Virol. 2015;89(10):5502-5514. https://doi.org/10.1128/jvi.00118-15.
Krishnan S, Wilson EM, Sheikh V, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209(6):931-939. https://doi.org/10.1093/infdis/jit581.
Zhang Z, Zhou Y, Lu J, et al. Changes in NK cell subsets and receptor expressions in HIV-1 infected chronic patients and HIV controllers. Front Immunol. 2021;12:792775. https://doi.org/10.3389/fimmu.2021.792775.
Lacy P, Stow JL. Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood. 2011;118(1):9-18. https://doi.org/10.1182/blood-2010-08-265892.
Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117(5):1175-1183. https://doi.org/10.1172/jci31537.
Striz I, Brabcova E, Kolesar L, Sekerkova A. Cytokine networking of innate immunity cells: a potential target of therapy. Clin Sci (Lond). 2014;126(9):593-612. https://doi.org/10.1042/cs20130497.
Liew FY. The role of innate cytokines in inflammatory response. Immunol Lett. 2003;85(2):131-134. https://doi.org/10.1016/s0165-2478(02)00238-9.
Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci. 1997;2(4):d12-d26. https://doi.org/10.2741/a171.
Zhou J, Tulotta C, Ottewell PD. IL-1beta in breast cancer bone metastasis. Expert Rev Mol Med. 2022;24:e11. https://doi.org/10.1017/erm.2022.4.
Laird BJ, McMillan D, Skipworth RJE, et al. The emerging role of interleukin 1beta (IL-1beta) in cancer cachexia. Inflammation. 2021;44(4):1223-1228. https://doi.org/10.1007/s10753-021-01429-8.
Garon EB, Chih-Hsin Yang J, Dubinett SM. The role of interleukin 1beta in the pathogenesis of lung cancer. JTO Clin Res Rep. 2020;1:100001.
Wonnenberg B, Bischoff M, Beisswenger C, et al. The role of IL-1beta in Pseudomonas aeruginosa in lung infection. Cell Tissue Res. 2016;364(2):225-229. https://doi.org/10.1007/s00441-016-2387-9.
Wang H, Qin L, Wang J, Huang W. Synovial fluid IL-1beta appears useful for the diagnosis of chronic periprosthetic joint infection. J Orthop Surg Res. 2021;16(1):144. https://doi.org/10.1186/s13018-021-02296-7.
Arriola Benitez PC, Pesce Viglietti AI, Gomes MTR, et al. Brucella abortus infection elicited hepatic stellate cell-mediated fibrosis through inflammasome-dependent IL-1beta production. Front Immunol. 2019;10:3036.
Browne EP. An interleukin-1 beta-encoding retrovirus exhibits enhanced replication in vivo. J Virol. 2015;89(1):155-164. https://doi.org/10.1128/jvi.02314-14.
Pruitt JH, Copeland EM, 3rd, Moldawer LL. Interleukin-1 and interleukin-1 antagonism in sepsis, systemic inflammatory response syndrome, and septic shock. Shock. 1995;3(4):235-251. https://doi.org/10.1097/00024382-199504000-00001.
Opal SM. Dual inhibition of interleukin-1beta and interleukin-18: a new treatment option for sepsis? Am J Respir Crit Care Med. 2014;189(3):242-244. https://doi.org/10.1164/rccm.201312-2292ed.
Zhao R, Zhou H, Su SB. A critical role for interleukin-1beta in the progression of autoimmune diseases. Int Immunopharm. 2013;17(3):658-669. https://doi.org/10.1016/j.intimp.2013.08.012.
Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J Am Coll Cardiol. 2017;70(18):2278-2289. https://doi.org/10.1016/j.jacc.2017.09.028.
Mai W, Liao Y. Targeting IL-1beta in the treatment of atherosclerosis. Front Immunol. 2020;11:589654. https://doi.org/10.3389/fimmu.2020.589654.
Gui WS, Wei X, Mai CL, et al. Interleukin-1beta overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain. 2016;12:174480691664678. https://doi.org/10.1177/1744806916646784.
Hangping Z, Ling H, Lijin J, et al. The preventive effect of IL-1beta antagonist on diabetic peripheral neuropathy. Endocr Metab Immune Disord Drug Targets. 2020;20(5):753-759. https://doi.org/10.2174/1871530319666191022114139.
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen. 2019;39(1):12. https://doi.org/10.1186/s41232-019-0101-5.
Yaseen MM, Yaseen MM, Alqudah MA. Broadly neutralizing antibodies: an approach to control HIV-1 infection. Int Rev Immunol. 2017;36(1):31-40. https://doi.org/10.1080/08830185.2016.1225301.
Yaseen MM, Abuharfeil NM, Alqudah MA, Yaseen MM. Mechanisms and factors that drive extensive human immunodeficiency virus type-1 Hypervariability: an overview. Viral Immunol. 2017;30(10):708-726. https://doi.org/10.1089/vim.2017.0065.
Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev. 2011;22:189-195.
Zaslona Z, Palsson-McDermott EM, Menon D, et al. The induction of pro-IL-1beta by lipopolysaccharide requires endogenous Prostaglandin E2 production. J Immunol. 2017;198(9):3558-3564. https://doi.org/10.4049/jimmunol.1602072.
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805-820. https://doi.org/10.1016/j.cell.2010.01.022.
Laliberte RE, Eggler J, Gabel CA. ATP treatment of human monocytes promotes caspase-1 maturation and externalization. J Biol Chem. 1999;274(52):36944-36951. https://doi.org/10.1074/jbc.274.52.36944.
Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505(7484):509-514. https://doi.org/10.1038/nature12940.
Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 2015;33(1):49-77. https://doi.org/10.1146/annurev-immunol-032414-112306.
Boraschi D, Italiani P, Weil S, Martin MU. The family of the interleukin-1 receptors. Immunol Rev. 2018;281(1):197-232. https://doi.org/10.1111/imr.12606.
Xu D, Mu R, Wei X. The roles of IL-1 family cytokines in the pathogenesis of systemic sclerosis. Front Immunol. 2019;10:2025. https://doi.org/10.3389/fimmu.2019.02025.
Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019;50(4):778-795. https://doi.org/10.1016/j.immuni.2019.03.012.
Peters VA, Joesting JJ, Freund GG. IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav Immun. 2013;32:1-8. https://doi.org/10.1016/j.bbi.2012.11.006.
Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med. 2020:217.
Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol. 2017;14(1):22-35. https://doi.org/10.1038/cmi.2016.25.
Hsi ED, Remick DG. Monocytes are the major producers of interleukin-1 beta in an ex vivo model of local cytokine production. J Interferon Cytokine Res. 1995;15(1):89-94. https://doi.org/10.1089/jir.1995.15.89.
Tufa DM, Ahmad F, Chatterjee D, Ahrenstorf G, Schmidt RE, Jacobs R. Brief report: HIV-1 infection results in increased frequency of active and inflammatory SlanDCs that produce high level of IL-1beta. J Acquir Immune Defic Syndr. 2016;73(1):34-38. https://doi.org/10.1097/qai.0000000000001082.
Netea MG, Nold-Petry CA, Nold MF, et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood. 2009;113(10):2324-2335. https://doi.org/10.1182/blood-2008-03-146720.
Oglodek E. Changes in the serum levels of cytokines: IL-1beta, IL-4, IL-8 and IL-10 in depression with and without Posttraumatic stress disorder. Brain Sci. 2022;12(3):387. https://doi.org/10.3390/brainsci12030387.
Kreuzer KA, Dayer JM, Rockstroh JK, Sauerbruch T, Spengler U. The IL-1 system in HIV infection: peripheral concentrations of IL-1beta, IL-1 receptor antagonist and soluble IL-1 receptor type II. Clin Exp Immunol. 1997;109:54-58.
Morris D, Guerra C, Donohue C, Oh H, Khurasany M, Venketaraman V. Unveiling the mechanisms for decreased glutathione in individuals with HIV infection. Clin Dev Immunol. 2012;2012:734125-734210. https://doi.org/10.1155/2012/734125.
Saing T, Valdivia A, Hussain P, et al. Data on pro-inflammatory cytokines IL-1beta, IL-17, and IL-6 in the peripheral blood of HIV-infected individuals. Data Brief. 2016;8:1044-1047. https://doi.org/10.1016/j.dib.2016.07.023.
Granowitz EV, Saget BM, Wang MZ, Dinarello CA, Skolnik PR, Fauci AS. Interleukin 1 induces HIV-1 expression in chronically infected U1 cells: blockade by interleukin 1 receptor antagonist and tumor necrosis factor binding protein type 1. Mol Med. 1995;1(6):667-677. https://doi.org/10.1007/bf03401607.
Poli G, Kinter AL, Fauci AS. Interleukin 1 induces expression of the human immunodeficiency virus alone and in synergy with interleukin 6 in chronically infected U1 cells: inhibition of inductive effects by the interleukin 1 receptor antagonist. Proc Natl Acad Sci U. S. A. 1994;91:108-112. https://doi.org/10.1073/pnas.91.1.108.
Feria MG, Taborda NA, Hernandez JC, Rugeles MT. HIV replication is associated to inflammasomes activation, IL-1beta, IL-18 and caspase-1 expression in GALT and peripheral blood. PLoS One. 2018;13(4):e0192845. https://doi.org/10.1371/journal.pone.0192845.
Belec L, Meillet D, Hernvann A, Gresenguet G, Gherardi R. Differential elevation of circulating interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 in AIDS-associated cachectic states. Clin Diagn Lab Immunol. 1994;1:117-120. https://doi.org/10.1128/cdli.1.1.117-120.1994.
Roux-Lombard P, Modoux C, Cruchaud A, Dayer J.-M. Purified blood monocytes from HIV 1-infected patients induce high levels of TNFα and IL-1. Clin Immunol Immunopathol. 1989;50(3):374-384. https://doi.org/10.1016/0090-1229(89)90144-x.
Esser R, von Briesen H, Brugger M, et al. Secretory repertoire of HIV-infected human monocytes/macrophages. Pathobiology. 1991;59(4):219-222. https://doi.org/10.1159/000163649.
Sadeghi HM, Weiss L, Kazatchkine MD, Haeffner-Cavaillon N. Antiretroviral therapy suppresses the constitutive production of interleukin-1 associated with human immunodeficiency virus infection. J Infect Dis. 1995;172(2):547-550. https://doi.org/10.1093/infdis/172.2.547.
Gallo P, Frei K, Rordorf C, Lazdins J, Tavolato B, Fontana A. Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system: an evaluation of cytokines in cerebrospinal fluid. J Neuroimmunol. 1989;23(2):109-116. https://doi.org/10.1016/0165-5728(89)90029-5.
Steffen M, Reinecker HC, Petersen J, et al. Differences in cytokine secretion by intestinal mononuclear cells, peripheral blood monocytes and alveolar macrophages from HIV-infected patients. Clin Exp Immunol. 1993;91(1):30-36. https://doi.org/10.1111/j.1365-2249.1993.tb03349.x.
Shive CL, Mudd JC, Funderburg NT, et al. Inflammatory cytokines drive CD4+ T-cell cycling and impaired responsiveness to interleukin 7: implications for immune failure in HIV disease. J Infect Dis. 2014;210(4):619-629. https://doi.org/10.1093/infdis/jiu125.
Biancotto A, Grivel JC, Iglehart SJ, et al. Abnormal activation and cytokine spectra in lymph nodes of people chronically infected with HIV-1. Blood. 2007;109(10):4272-4279. https://doi.org/10.1182/blood-2006-11-055764.
Berlier W, Bourlet T, Levy R, Lucht F, Pozzetto B, Delezay O. Amount of seminal IL-1beta positively correlates to HIV-1 load in the semen of infected patients. J Clin Virol. 2006;36(3):204-207. https://doi.org/10.1016/j.jcv.2006.04.004.
Roberts L, Passmore JA, Williamson C, et al. Plasma cytokine levels during acute HIV-1 infection predict HIV disease progression. AIDS. 2010;24(6):819-831. https://doi.org/10.1097/qad.0b013e3283367836.
Kedzierska K, Crowe SM, Turville S, Cunningham AL. The influence of cytokines, chemokines and their receptors on HIV-1 replication in monocytes and macrophages. Rev Med Virol. 2003;13(1):39-56. https://doi.org/10.1002/rmv.369.
Copeland KF. Modulation of HIV-1 transcription by cytokines and chemokines. Mini Rev Med Chem. 2005;5(12):1093-1101. https://doi.org/10.2174/138955705774933383.
Decrion AZ, Dichamp I, Varin A, Herbein G. HIV and inflammation. Curr HIV Res. 2005;3:243-259. https://doi.org/10.2174/1570162054368057.
Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology. 2009;6(1):118. https://doi.org/10.1186/1742-4690-6-118.
Hokello J, Sharma AL, Dimri M, Tyagi M. Insights into the HIV latency and the role of cytokines. Pathogens. 2019;8(3):137. https://doi.org/10.3390/pathogens8030137.
Folks TM, Clouse KA, Justement J, et al. Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U. S. A. 1989;86(7):2365-2368. https://doi.org/10.1073/pnas.86.7.2365.
Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U. S. A. 1989;86(7):2336-2340. https://doi.org/10.1073/pnas.86.7.2336.
Kobayashi N, Hamamoto Y, Koyanagi Y, Chen ISY, Yamamoto N. Effect of interleukin-1 on the augmentation of human immunodeficiency virus gene expression. Biochem Biophys Res Commun. 1989;165(2):715-721. https://doi.org/10.1016/s0006-291x(89)80025-7.
Ellis RJ, Childers ME, Cherner M, Lazzaretto D, Letendre S, Grant I. Increased human immunodeficiency virus loads in active methamphetamine users are explained by reduced effectiveness of antiretroviral therapy. J Infect Dis. 2003;188(12):1820-1826. https://doi.org/10.1086/379894.
Lawson KS, Prasad A, Groopman JE. Methamphetamine enhances HIV-1 replication in CD4(+) T-cells via a novel IL-1beta auto-regulatory loop. Front Immunol. 2020;11:136. https://doi.org/10.3389/fimmu.2020.00136.
Rajasingham R, Mimiaga MJ, White JM, Pinkston MM, Baden RP, Mitty JA. A systematic review of behavioral and treatment outcome studies among HIV-infected men who have sex with men who abuse crystal methamphetamine. AIDS Patient Care STDS. 2012;26(1):36-52. https://doi.org/10.1089/apc.2011.0153.
Cachay ER, Moini N, Kosakovsky Pond SL, et al. Active methamphetamine use is associated with transmitted drug resistance to non-nucleoside reverse transcriptase inhibitors in individuals with HIV infection of unknown duration. Open AIDS J. 2007;1:5-10. https://doi.org/10.2174/1874613600701010005.
Potula R, Persidsky Y. Adding fuel to the fire: methamphetamine enhances HIV infection. Am J Pathol. 2008;172(6):1467-1470. https://doi.org/10.2353/ajpath.2008.080130.
Toussi SS, Joseph A, Zheng JH, Dutta M, Santambrogio L, Goldstein H. Short communication: methamphetamine treatment increases in vitro and in vivo HIV replication. AIDS Res Hum Retroviruses. 2009;25(11):1117-1121. https://doi.org/10.1089/aid.2008.0282.
Massanella M, Gianella S, Schrier R, et al. Methamphetamine use in HIV-infected individuals affects T-cell function and viral outcome during suppressive antiretroviral therapy. Sci Rep. 2015;5(1):13179. https://doi.org/10.1038/srep13179.
Mata MM, Napier TC, Graves SM, Mahmood F, Raeisi S, Baum LL. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse. Eur J Pharmacol. 2015;752:26-33. https://doi.org/10.1016/j.ejphar.2015.02.002.
Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science. 1987;238(4828):800-802. https://doi.org/10.1126/science.3313729.
Shapiro L, Heidenreich KA, Meintzer MK, Dinarello CA. Role of p38 mitogen-activated protein kinase in HIV type 1 production in vitro. Proc Natl Acad Sci U. S. A. 1998;95(13):7422-7426. https://doi.org/10.1073/pnas.95.13.7422.
Saha RN, Jana M, Pahan K. MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65. J Immunol. 2007;179(10):7101-7109. https://doi.org/10.4049/jimmunol.179.10.7101.
Guadalupe M, Reay E, Sankaran S, et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol. 2003;77(21):11708-11717. https://doi.org/10.1128/jvi.77.21.11708-11717.2003.
Mehandru S, Poles MA, Tenner-Racz K, et al. Lack of mucosal immune reconstitution during prolonged treatment of acute and early HIV-1 infection. PLoS Med. 2006;3(12):e484. https://doi.org/10.1371/journal.pmed.0030484.
Brenchley JM, Schacker TW, Ruff LE, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200(6):749-759. https://doi.org/10.1084/jem.20040874.
Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol Rev. 1997;156(1):145-166. https://doi.org/10.1111/j.1600-065x.1997.tb00966.x.
Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature. 2005;434(7037):1093-1097. https://doi.org/10.1038/nature03501.
Avettand-Fenoel V, Hocqueloux L, Muller-Trutwin M, et al. Greater diversity of HIV DNA variants in the rectum compared to variants in the blood in patients without HAART. J Med Virol. 2011;83(9):1499-1507. https://doi.org/10.1002/jmv.22132.
Guadalupe M, Sankaran S, George MD, et al. Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J Virol. 2006;80(16):8236-8247. https://doi.org/10.1128/jvi.00120-06.
Belmonte L, Olmos M, Fanin A, et al. The intestinal mucosa as a reservoir of HIV-1 infection after successful HAART. AIDS. 2007;21(15):2106-2108. https://doi.org/10.1097/qad.0b013e3282efb74b.
Chun TW, Nickle DC, Justement JS, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008;197(5):714-720. https://doi.org/10.1086/527324.
Yukl SA, Gianella S, Sinclair E, et al. Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis. 2010;202(10):1553-1561. https://doi.org/10.1086/656722.
Raehtz KD, Barrenas F, Xu C, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16(3):e1008333. https://doi.org/10.1371/journal.ppat.1008333.
Liovat AS, Jacquelin B, Ploquin MJ, Barre-Sinoussi F, Muller-Trutwin MC. African non human primates infected by SIV - why don't they get sick? Lessons from studies on the early phase of non-pathogenic SIV infection. Curr HIV Res. 2009;7(1):39-50. https://doi.org/10.2174/157016209787048546.
Luo X, Frouard J, Zhang G, et al. Subsets of tissue CD4 T cells display different susceptibilities to HIV infection and death: analysis by CyTOF and single cell RNA-seq. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.883420.
Nilsson J, Kinloch-de-Loes S, Granath A, Sonnerborg A, Goh LE, Andersson J. Early immune activation in gut-associated and peripheral lymphoid tissue during acute HIV infection. AIDS. 2007;21(5):565-574. https://doi.org/10.1097/qad.0b013e3280117204.
Mak G, Zaunders JJ, Bailey M, et al. Preservation of gastrointestinal mucosal barrier function and Microbiome in patients with controlled HIV infection. Front Immunol. 2021;12:688886. https://doi.org/10.3389/fimmu.2021.688886.
Taborda NA, Correa LA, Feria MG, Rugeles MT. The spontaneous control of HIV replication is characterized by decreased pathological changes in the gut-associated lymphoid tissue. Curr HIV Res. 2018;16(5):338-344. https://doi.org/10.2174/1570162x17666190130115113.
Rotger M, Dalmau J, Rauch A, et al. Comparative transcriptomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus macaque. J Clin Invest. 2011;121(6):2391-2400. https://doi.org/10.1172/jci45235.
Choudhary SK, Vrisekoop N, Jansen CA, et al. Low immune activation despite high levels of pathogenic human immunodeficiency virus type 1 results in long-term asymptomatic disease. J Virol. 2007;81(16):8838-8842. https://doi.org/10.1128/jvi.02663-06.
Silvestri G, Sodora DL, Koup RA, et al. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity. 2003;18(3):441-452. https://doi.org/10.1016/s1074-7613(03)00060-8.
Estes JD, Gordon SN, Zeng M, et al. Early resolution of acute immune activation and induction of PD-1 in SIV-infected sooty mangabeys distinguishes nonpathogenic from pathogenic infection in rhesus macaques. J Immunol. 2008;180(10):6798-6807. https://doi.org/10.4049/jimmunol.180.10.6798.
Bosinger SE, Li Q, Gordon SN, et al. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest. 2009;119:3556-3572. https://doi.org/10.1172/jci40115.
Jacquelin B, Mayau V, Targat B, et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest. 2009;119:3544-3555. https://doi.org/10.1172/jci40093.
Harris LD, Tabb B, Sodora DL, et al. Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques. J Virol. 2010;84(15):7886-7891. https://doi.org/10.1128/jvi.02612-09.
Chahroudi A, Bosinger SE, Vanderford TH, Paiardini M, Silvestri G. Natural SIV hosts: showing AIDS the door. Science. 2012;335(6073):1188-1193. https://doi.org/10.1126/science.1217550.
Lederman MM, Calabrese L, Funderburg NT, et al. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J Infect Dis. 2011;204(8):1217-1226. https://doi.org/10.1093/infdis/jir507.
Rethi B, Fluur C, Atlas A, et al. Loss of IL-7Ralpha is associated with CD4 T-cell depletion, high interleukin-7 levels and CD28 down-regulation in HIV infected patients. AIDS. 2005;19(18):2077-2086. https://doi.org/10.1097/01.aids.0000189848.75699.0f.
Colle JH, Moreau JL, Fontanet A, et al. Regulatory dysfunction of the interleukin-7 receptor in CD4 and CD8 lymphocytes from HIV-infected patients--effects of antiretroviral therapy. J Acquir Immune Defic Syndr. 2006;42(3):277-285. https://doi.org/10.1097/01.qai.0000214823.11034.4e.
Colle JH, Moreau JL, Fontanet A, Lambotte O, Delfraissy JF, Theze J. The correlation between levels of IL-7Ralpha expression and responsiveness to IL-7 is lost in CD4 lymphocytes from HIV-infected patients. AIDS. 2007;21(1):101-103. https://doi.org/10.1097/qad.0b013e3280115b6a.
Thang PH, Ruffin N, Brodin D, et al. The role of IL-1beta in reduced IL-7 production by stromal and epithelial cells: a model for impaired T-cell numbers in the gut during HIV-1 infection. J Intern Med. 2010;268(2):181-193. https://doi.org/10.1111/j.1365-2796.2010.02241.x.
Hsiao F, Frouard J, Gramatica A, et al. Tissue memory CD4+ T cells expressing IL-7 receptor-alpha (CD127) preferentially support latent HIV-1 infection. PLoS Pathog. 2020;16(4):e1008450. https://doi.org/10.1371/journal.ppat.1008450.
Jalbert E, Crawford TQ, D'Antoni ML, et al. IL-1Beta enriched monocytes mount massive IL-6 responses to common inflammatory triggers among chronically HIV-1 infected adults on stable anti-retroviral therapy at risk for cardiovascular disease. PLoS One. 2013;8(9):e75500. https://doi.org/10.1371/journal.pone.0075500.
Nakajima K, Martinez-Maza O, Hirano T, et al. Induction of IL-6 (B cell stimulatory factor-2/IFN-beta 2) production by HIV. J Immunol. 1989;142:531-536.
Breen EC, Rezai AR, Nakajima K, et al. Infection with HIV is associated with elevated IL-6 levels and production. J Immunol. 1996;144:480-484.
Neuhaus J, Jacobs DR, Jr, Baker JV, et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 2010;201(12):1788-1795. https://doi.org/10.1086/652749.
Armah KA, McGinnis K, Baker J, et al. HIV status, burden of comorbid disease, and biomarkers of inflammation, altered coagulation, and monocyte activation. Clin Infect Dis. 2012;55(1):126-136. https://doi.org/10.1093/cid/cis406.
Nordell AD, McKenna M, Borges AH, Duprez D, Neuhaus J, Neaton JD. Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation. J Am Heart Assoc. 2014;3:e000844. https://doi.org/10.1161/jaha.114.000844.
Duprez DA, Neuhaus J, Kuller LH, et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS One. 2012;7(9):e44454. https://doi.org/10.1371/journal.pone.0044454.
Tosato G, Jones KD. Interleukin-1 induces interleukin-6 production in peripheral blood monocytes. Blood. 1990;75(6):1305-1310. https://doi.org/10.1182/blood.v75.6.1305.bloodjournal7561305.
Cassol E, Rossouw T, Malfeld S, et al. CD14(+) macrophages that accumulate in the colon of African AIDS patients express pro-inflammatory cytokines and are responsive to lipopolysaccharide. BMC Infect Dis. 2015;15(1):430. https://doi.org/10.1186/s12879-015-1176-5.
Hirao LA, Grishina I, Bourry O, et al. Early mucosal sensing of SIV infection by paneth cells induces IL-1beta production and initiates gut epithelial disruption. PLoS Pathog. 2014;10(8):e1004311. https://doi.org/10.1371/journal.ppat.1004311.
Vassallo M, Mercie P, Cottalorda J, Ticchioni M, Dellamonica P. The role of lipopolysaccharide as a marker of immune activation in HIV-1 infected patients: a systematic literature review. Virol J. 2012;9(1):174. https://doi.org/10.1186/1743-422x-9-174.
van der Heijden WA, Van de Wijer L, Keramati F, et al. Chronic HIV infection induces transcriptional and functional reprogramming of innate immune cells. JCI Insight. 2021:6.
Wallet MA, Rodriguez CA, Yin L, et al. Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS. 2010;24(9):1281-1290. https://doi.org/10.1097/qad.0b013e328339e228.
Epstein LG, Gendelman HE. Human immunodeficiency virus type 1 infection of the nervous system: pathogenetic mechanisms. Ann Neurol. 1993;33(5):429-436. https://doi.org/10.1002/ana.410330502.
Brabers NA, Nottet HS. Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Invest. 2006;36(7):447-458. https://doi.org/10.1111/j.1365-2362.2006.01657.x.
Tyor WR, Glass JD, Griffin JW, et al. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol. 1992;31(4):349-360. https://doi.org/10.1002/ana.410310402.
Gray F, Adle-Biassette H, Chretien F, Lorin de la Grandmaison G, Force G, Keohane C. Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol. 2001;20:146-155.
Zheng JC, Huang Y, Tang K, et al. HIV-1-infected and/or immune-activated macrophages regulate astrocyte CXCL8 production through IL-1beta and TNF-alpha: involvement of mitogen-activated protein kinases and protein kinase R. J Neuroimmunol. 2008;200(1-2):100-110. https://doi.org/10.1016/j.jneuroim.2008.06.015.
Nuovo GJ, Alfieri ML, Cerami A. AIDS dementia is associated with massive, activated HIV-1 infection and concomitant expression of several cytokines. Mol Med. 1996;2(3):358-366. https://doi.org/10.1007/bf03401633.
Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE. Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol. 1997;74(1-2):1-8. https://doi.org/10.1016/s0165-5728(96)00160-9.
Herbein G, Keshav S, Collin M, Montaner LJ, Gordon S. HIV-1 induces tumour necrosis factor and IL-1 gene expression in primary human macrophages independent of productive infection. Clin Exp Immunol. 1994;95(3):442-449. https://doi.org/10.1111/j.1365-2249.1994.tb07016.x.
Merrill JE, Koyanagi Y, Chen IS. Interleukin-1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol. 1989;63(10):4404-4408. https://doi.org/10.1128/jvi.63.10.4404-4408.1989.
Bagetta G, Corasaniti MT, Berliocchi L, et al. Involvement of interleukin-1β in the mechanism of human immunodeficiency virus type 1 (HIV-1) recombinant protein gp120-induced apoptosis in the neocortex of rat. Neuroscience. 1999;89(4):1051-1066. https://doi.org/10.1016/s0306-4522(98)00363-7.
He X, Yang W, Zeng Z, et al. NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cell Mol Immunol. 2020;17(3):283-299. https://doi.org/10.1038/s41423-019-0260-y.
Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5(8):629-640. https://doi.org/10.1038/nri1664.
Cheung R, Ravyn V, Wang L, Ptasznik A, Collman RG. Signaling mechanism of HIV-1 gp120 and virion-induced IL-1beta release in primary human macrophages. J Immunol. 2008;180(10):6675-6684. https://doi.org/10.4049/jimmunol.180.10.6675.
Liu X, Nemeth DP, McKim DB, et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct Neuroimmune activities. Immunity. 2019;50(3):317-333. e316. https://doi.org/10.1016/j.immuni.2019.02.012.
Liu X, Quan N. Microglia and CNS interleukin-1: beyond immunological concepts. Front Neurol. 2018;9:8. https://doi.org/10.3389/fneur.2018.00008.
Yu J, Francisco AMC, Patel BG, et al. IL-1beta stimulates brain-derived Neurotrophic factor production in eutopic endometriosis stromal cell cultures: a model for cytokine regulation of Neuroangiogenesis. Am J Pathol. 2018;188(10):2281-2292. https://doi.org/10.1016/j.ajpath.2018.06.011.
Lodge R, Bellini N, Laporte M, et al. Interleukin-1beta triggers p53-mediated downmodulation of CCR5 and HIV-1 entry in macrophages through MicroRNAs 103 and 107. mBio. 2020:11.
Shen R, Richter HE, Clements RH, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol. 2009;83(7):3258-3267. https://doi.org/10.1128/jvi.01796-08.
Ganor Y, Zhou Z, Bodo J, et al. The adult penile urethra is a novel entry site for HIV-1 that preferentially targets resident urethral macrophages. Mucosal Immunol. 2013;6(4):776-786. https://doi.org/10.1038/mi.2012.116.
Ganor Y, Real F, Sennepin A, et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat Microbiol. 2019;4:633-644. https://doi.org/10.1038/s41564-018-0335-z.
Jambo KC, Banda DH, Kankwatira AM, et al. Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol. 2014;7(5):1116-1126. https://doi.org/10.1038/mi.2013.127.
Wang X, Mbondji-Wonje C, Zhao J, Hewlett I. IL-1beta and IL-18 inhibition of HIV-1 replication in Jurkat cells and PBMCs. Biochem Biophys Res Commun. 2016;473:926-930.
Passmore JA, Jaspan HB, Masson L. Genital inflammation, immune activation and risk of sexual HIV acquisition. Curr Opin HIV AIDS. 2016;11(2):156-162. https://doi.org/10.1097/coh.0000000000000232.
Masson L, Passmore JA, Liebenberg LJ, et al. Genital inflammation and the risk of HIV acquisition in women. Clin Infect Dis. 2015;61(2):260-269. https://doi.org/10.1093/cid/civ298.
Gosmann C, Anahtar MN, Handley SA, et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity. 2017;46(1):29-37. https://doi.org/10.1016/j.immuni.2016.12.013.
Anahtar MN, Byrne EH, Doherty KE, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015;42(5):965-976. https://doi.org/10.1016/j.immuni.2015.04.019.
Fichorova RN, Tucker LD, Anderson DJ. The molecular basis of nonoxynol-9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission. J Infect Dis. 2001;184(4):418-428. https://doi.org/10.1086/322047.
Gumbi PP, Nkwanyana NN, Bere A, et al. Impact of mucosal inflammation on cervical human immunodeficiency virus (HIV-1)-specific CD8 T-cell responses in the female genital tract during chronic HIV infection. J Virol. 2008;82(17):8529-8536. https://doi.org/10.1128/jvi.00183-08.
Mkhize NN, Gumbi PP, Liebenberg LJ, et al. Persistence of genital tract T cell responses in HIV-infected women on highly active antiretroviral therapy. J Virol. 2010;84(20):10765-10772. https://doi.org/10.1128/jvi.00518-10.
Lee BN, Ordonez N, Popek EJ, et al. Inflammatory cytokine expression is correlated with the level of human immunodeficiency virus (HIV) transcripts in HIV-infected placental trophoblastic cells. J Virol. 1997;71(5):3628-3635. https://doi.org/10.1128/jvi.71.5.3628-3635.1997.
Nahin RL. Estimates of pain prevalence and severity in adults: United States, 2012. J Pain. 2015;16(8):769-780. https://doi.org/10.1016/j.jpain.2015.05.002.
Von Korff M, Scher AI, Helmick C, et al. United States national pain strategy for population research: concepts, definitions, and pilot data. J Pain. 2016;17(10):1068-1080. https://doi.org/10.1016/j.jpain.2016.06.009.
Merlin JS, Westfall AO, Raper JL, et al. Pain, mood, and substance abuse in HIV: implications for clinic visit utilization, antiretroviral therapy adherence, and virologic failure. J Acquir Immune Defic Syndr. 2012;61(2):164-170. https://doi.org/10.1097/qai.0b013e3182662215.
Miaskowski C, Penko JM, Guzman D, Mattson JE, Bangsberg DR, Kushel MB. Occurrence and characteristics of chronic pain in a community-based cohort of indigent adults living with HIV infection. J Pain. 2011;12(9):1004-1016. https://doi.org/10.1016/j.jpain.2011.04.002.
Herzberg U, Sagen J. Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J Neuroimmunol. 2001;116(1):29-39. https://doi.org/10.1016/s0165-5728(01)00288-0.
Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001;24(8):450-455. https://doi.org/10.1016/s0166-2236(00)01854-3.
Shi Y, Gelman BB, Lisinicchia JG, Tang SJ. Chronic-pain-associated astrocytic reaction in the spinal cord dorsal horn of human immunodeficiency virus-infected patients. J Neurosci. 2012;32:10833-10840. https://doi.org/10.1523/jneurosci.5628-11.2012.
Merlin JS, Westfall AO, Heath SL, et al. Brief report: IL-1beta levels are associated with chronic Multisite pain in people living with HIV. J Acquir Immune Defic Syndr. 2017;75(4):e99-e103. https://doi.org/10.1097/qai.0000000000001377.
Krebs SJ, Slike BM, Sithinamsuwan P, et al. Sex differences in soluble markers vary before and after the initiation of antiretroviral therapy in chronically HIV-infected individuals. AIDS. 2016;30(10):1533-1542. https://doi.org/10.1097/qad.0000000000001096.
Okay G, Koc MM, Guler EM, Yabaci A, Kocyigit A, Akkoyunlu Y. The effect of antiretroviral therapy on IL-6, IL-1beta, TNF-alpha, IFN-gamma levels and their relationship with HIV-RNA and CD4+ T cells in HIV patients. Curr HIV Res. 2020;18(5):354-361. https://doi.org/10.2174/1570162x18666200712174642.
Wilkinson KA, Schneider-Luftman D, Lai R, et al. Antiretroviral treatment-induced decrease in immune activation contributes to reduced susceptibility to tuberculosis in HIV-1/Mtb Co-infected persons. Front Immunol. 2021;12:645446. https://doi.org/10.3389/fimmu.2021.645446.
Masyuko SJ, Page ST, Polyak SJ, et al. Human immunodeficiency virus is associated with higher levels of systemic inflammation among Kenyan adults despite viral suppression. Clin Infect Dis. 2021;73(7):e2034-e2042. https://doi.org/10.1093/cid/ciaa1650.
Swartz TH, Esposito AM, Durham ND, Hartmann BM, Chen BK. P2X-selective purinergic antagonists are strong inhibitors of HIV-1 fusion during both cell-to-cell and cell-free infection. J Virol. 2014;88(19):11504-11515. https://doi.org/10.1128/jvi.01158-14.
Giroud C, Marin M, Hammonds J, Spearman P, Melikyan GB. P2X1 receptor antagonists inhibit HIV-1 fusion by blocking virus-coreceptor interactions. J Virol. 2015;89(18):9368-9382. https://doi.org/10.1128/jvi.01178-15.
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med. 2012;367(24):2322-2333. https://doi.org/10.1056/nejmra1205750.
Riteau N, Gasse P, Fauconnier L, et al. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am J Respir Crit Care Med. 2010;182(6):774-783. https://doi.org/10.1164/rccm.201003-0359oc.
Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677-687. https://doi.org/10.1038/nm.3893.
Soare AY, Durham ND, Gopal R, et al. P2X antagonists inhibit HIV-1 productive infection and inflammatory cytokines interleukin-10 (IL-10) and IL-1beta in a human tonsil explant model. J Virol. 2019;93(1). https://doi.org/10.1128/jvi.01186-18.
Hazleton JE, Berman JW, Eugenin EA. Purinergic receptors are required for HIV-1 infection of primary human macrophages. J Immunol. 2012;188(9):4488-4495. https://doi.org/10.4049/jimmunol.1102482.
Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol. 2004;240:31-304.
Ferrari D, Pizzirani C, Adinolfi E, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176(7):3877-3883. https://doi.org/10.4049/jimmunol.176.7.3877.
Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G. Tissue distribution of the P2X7 receptor. Neuropharmacology. 1997;36(9):1277-1283. https://doi.org/10.1016/s0028-3908(97)00140-8.
Di Virgilio F. Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci. 2007;28(9):465-472. https://doi.org/10.1016/j.tips.2007.07.002.
Marin M, Du Y, Giroud C, et al. High-throughput HIV-cell fusion assay for discovery of virus entry inhibitors. Assay Drug Dev Technol. 2015;13(3):155-166. https://doi.org/10.1089/adt.2015.639.
Giroud C, Du Y, Marin M, et al. Screening and functional profiling of small-Molecule HIV-1 entry and fusion inhibitors. Assay Drug Dev Technol. 2017;15(2):53-63. https://doi.org/10.1089/adt.2017.777.
Dubyak GR. P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol. 2012;14(11):1697-1706. https://doi.org/10.1111/cmi.12001.
Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol. 2018;50:32-38. https://doi.org/10.1016/j.coi.2017.10.011.
Feria-Garzon MG, Rugeles MT, Hernandez JC, Lujan JA, Taborda NA. Sulfasalazine as an immunomodulator of the inflammatory process during HIV-1 infection. Int J Mol Sci. 2019;20(18):4476. https://doi.org/10.3390/ijms20184476.
Schonbeck U, Mach F, Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol. 1998;161:3340-3346.
Russo R, Siviglia E, Gliozzi M, et al. Evidence implicating matrix metalloproteinases in the mechanism underlying accumulation of IL-1beta and neuronal apoptosis in the neocortex of HIV/gp120-exposed rats. Int Rev Neurobiol. 2007;82:407-421.
Devadas K, Biswas S, Ragupathy V, Lee S, Dayton A, Hewlett I. Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones. PLoS One. 2018;13(1):e0191916. https://doi.org/10.1371/journal.pone.0191916.
Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8-27. https://doi.org/10.1111/imr.12621.
Goncales JP, Lopes TRR, de Lorena VMB, et al. Association of NFkappaB and related-cytokines with the viral load and development of antibodies against HHV-8 in people living with HIV/AIDS. Med Microbiol Immunol. 2020;209(1):41-49. https://doi.org/10.1007/s00430-019-00637-2.
Ladell K, Hazenberg MD, Fitch M, et al. Continuous antigenic stimulation of DO11.10 TCR transgenic mice in the presence or absence of IL-1beta: possible implications for mechanisms of T cell depletion in HIV disease. J Immunol. 2015;195(9):4096-4105. https://doi.org/10.4049/jimmunol.1500799.
Petit F, Corbeil J, Lelièvre J.-D, et al. Role of CD95-activated caspase-1 processing of IL-1β in TCR-mediated proliferation of HIV-infected CD4+ T cells. Eur J Immunol. 2001;31(12):3513-3524. https://doi.org/10.1002/1521-4141(200112)31:12<3513::aid-immu3513>3.0.co;2-j.
Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis. 2015;20(2):196-209. https://doi.org/10.1007/s10495-014-1073-1.
Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010;3(105):cm1. https://doi.org/10.1126/scisignal.3105cm1.
Kaminsky LW, Al-Sadi R, Ma TY. IL-1beta and the intestinal epithelial tight junction barrier. Front Immunol. 2021;12:767456. https://doi.org/10.3389/fimmu.2021.767456.
Contributed Indexing:
Keywords: CD4+T cells; GALT; IL-1R1/IL-1R3; caspase-1; inflammation; monocytes/macrophages; pyroptosis
Substance Nomenclature:
0 (Cytokines)
0 (IL1B protein, human)
0 (Interleukin-1beta)
Entry Date(s):
Date Created: 20221009 Date Completed: 20230123 Latest Revision: 20230127
Update Code:
20240105
DOI:
10.1002/rmv.2400
PMID:
36209388
Czasopismo naukowe
Interleukin (IL)-1β is a key innate cytokine that is essential for immune activation and promoting the inflammatory process. However, abnormal elevation in IL-1β levels has been associated with unwanted clinical outcomes. IL-1β is the most extensively studied cytokine among the IL-1 family of cytokines and its role in pathology is well established. During the course of human immunodeficiency virus type 1 (HIV-1) infection, the level of this proinflammatory cytokine is increased in different anatomical compartments, particularly in lymphatic tissues, and this elevation is associated with disease progression. The aim of this review is to address the pathological roles play by IL-1β in the light of enhancing HIV-1 replication, driving immune cell depletion, and chronic immune activation. The role of IL-1β in HIV-1 transmission (sexually or vertically 'from mother-to-child') will also be discussed. Additionally, the impact of the available antiretroviral therapy regimens on the levels of IL-1β in HIV-1 treated patients is also discussed. Finally, we will provide a glance on how IL-1β could be targeted as a therapeutic strategy.
(© 2022 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies