Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Response to "complexities of defining the bioenergetic efficiency and VO 2 slow component of skeletal muscle contraction".

Tytuł:
Response to "complexities of defining the bioenergetic efficiency and VO 2 slow component of skeletal muscle contraction".
Autorzy:
MacDougall KB; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
Falconer TM; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
MacIntosh BR; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
Źródło:
Scandinavian journal of medicine & science in sports [Scand J Med Sci Sports] 2022 Nov; Vol. 32 (11), pp. 1684-1685.
Typ publikacji:
Letter; Comment
Język:
English
Imprint Name(s):
Publication: Copenhagen : Munksgaard International Publishers
Original Publication: Copenhagen : Munksgaard, c1991-
MeSH Terms:
Muscle Contraction*
Oxygen Consumption*/physiology
Energy Metabolism ; Humans
References:
O'Malley BGJ, Robergs RA. Complexities of defining the bioenergetic efficiency and VO2 slow component of skeletal muscle contraction. Scand J Med Sci Sports. 2022;32:1682-1683. doi:10.1111/sms.14224.
Poole DC, Schaffartzik W, Knight DR, et al. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol. 1991;71:1245-1260. doi:10.1152/jappl.1991.71.4.1245.
MacDougall KB, Falconer TM, MacIntosh BR. Efficiency of cycling exercise: Quantification, mechanisms, and misunderstandings. Scand J Med Sci Sports. 2022;32:951-970. doi:10.1111/sms.14149.
Di Prampero PE, Ferretti G. The energetics of anaerobic muscle metabolism: A reappraisal of older and recent concepts. Respir Physiol. 1999;118:103-115. doi:10.1016/S0034-5687(99)00083-3.
O'Connell JM, Weir JM, MacIntosh BR. Blood lactate accumulation decreases during the slow component of oxygen uptake without a decrease in muscular efficiency. Pflugers Arch Eur J Physiol. 2017;469:1257-1265. doi:10.1007/s00424-017-1986-y.
Özyener F, Whipp BJ, Ward SA. The contribution of “resting” body muscles to the slow component of pulmonary oxygen uptake during high-intensity cycling. J Sports Sci Med. 2012;11:759-767.
Grassi B, Pogliaghi S, Rampichini S, et al. Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol. 2003;95:149-158. doi:10.1152/japplphysiol.00695.2002.
Cleland SM, Murias JM, Kowalchuk JM, Paterson DH. Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and kneeextension exercise. Appl Physiol Nutr Metab. 2012;37:138-148. doi:10.1139/H11-143.
de Almeida AR, Forot J, Millet GY, Murias JM. Comparing muscle V_ O2 from near-infrared spectroscopy desaturation rate to pulmonary V_ O2 during cycling below, at, and above the maximal lactate steady state. J Appl Physiol. 2022;132:641-652. doi:10.1152/japplphysiol.00754.2021.
Entry Date(s):
Date Created: 20221010 Date Completed: 20221012 Latest Revision: 20221019
Update Code:
20240105
DOI:
10.1111/sms.14227
PMID:
36214544
Opinia redakcyjna
Comment on: Scand J Med Sci Sports. 2022 Nov;32(11):1682-1683. (PMID: 36214543)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies