Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A multiscale modeling method for therapeutic antibodies in ion exchange chromatography.

Tytuł:
A multiscale modeling method for therapeutic antibodies in ion exchange chromatography.
Autorzy:
Saleh D; Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.; Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Hess R; Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.; Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Ahlers-Hesse M; Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Rischawy F; Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.; Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Wang G; Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Grosch JH; Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Schwab T; Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Kluters S; Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Studts J; Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Hubbuch J; Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Źródło:
Biotechnology and bioengineering [Biotechnol Bioeng] 2023 Jan; Vol. 120 (1), pp. 125-138. Date of Electronic Publication: 2022 Oct 24.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley.
MeSH Terms:
Immunoglobulin G*/chemistry
Antibodies, Monoclonal*/chemistry
Chromatography, Ion Exchange/methods ; Thermodynamics ; Adsorption
References:
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
Andrew, S. M., & Titus, J. A. (1997). Fragmentation of immunoglobulin g. Current Protocols in Immunology, 21(1), 2-8.
Blech, M., Hörer, S., Kuhn, A. B., Kube, S., Göddeke, H., Kiefer, H., Zang, Y., Alber, Y., Kast, S. M., Westermann, M., Tully, M. D., Schäfer, L. V., & Garidel, P. (2019). Structure of a therapeutic full-length anti-npra igg4 antibody: Dissecting conformational diversity. Biophysical Journal, 116(9), 1637-1649.
Boardman, N., & Partridge, S. (1955). Separation of neutral proteins on ion-exchange resins. Biochemical Journal, 59(4), 543-552.
Borg, N., Brodsky, Y., Moscariello, J., Vunnum, S., Vedantham, G., Westerberg, K., & Nilsson, B. (2014). Modeling and robust pooling design of a preparative cation-exchange chromatography step for purification of monoclonal antibody monomer from aggregates. Journal of Chromatography A, 1359, 170-181.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Cardillo, A. G., Castellanos, M. M., Desailly, B., Dessoy, S., Mariti, M., Portela, R. M., Scutella, B., von Stosch, M., Tomba, E., & Varsakelis, C. (2021). Towards in silico process modeling for vaccines. Trends in Biotechnology, 39(11), 1120-1130.
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250.
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). Molprobity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12-21.
Chung, W. K., Freed, A. S., Holstein, M. A., McCallum, S. A., & Cramer, S. M. (2010). Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using nmr. Proceedings of the National Academy of Sciences of the United States of America, 107(39), 16811-16816.
Guiochon, G., Felinger, A., & Shirazi, D. G. (2006). Fundamentals of preparative and nonlinear chromatography. Elsevier.
Hahn, T., Baumann, P., Huuk, T., Heuveline, V., & Hubbuch, J. (2016). Uv absorption-based inverse modeling of protein chromatography. Engineering in Life Sciences, 16(2), 99-106. https://doi.org/10.1002/elsc.201400247.
Hahn, T., Huuk, T., Osberghaus, A., Doninger, K., Nath, S., Hepbildikler, S., Heuveline, V., & Hubbuch, J. (2016). Calibration-free inverse modeling of ion-exchange chromatography in industrial antibody purification. Engineering in Life Sciences, 16(2), 107-113. https://doi.org/10.1002/elsc.201400248.
Hunt, S., Larsen, T., & Todd, R. J. (2017). Modeling preparative cation exchange chromatography of monoclonal antibodies. In A. Staby & S. Ahuja (Eds.), Preparative chromatography for separation of proteins. John Wiley & Sons, Incorporated.
Hutter, C., von Stosch, M., Bournazou, M. N. C., & Butté, A. (2021). Knowledge transfer across cell lines using hybrid Gaussian process models with entity embedding vectors. Biotechnology and Bioengineering, 118(11), 4389-4401.
Ishihara, T., Kadoya, T., Yoshida, H., Tamada, T., & Yamamoto, S. (2005). Rational methods for predicting human monoclonal antibodies retention in protein a affinity chromatography and cation exchange chromatography. Journal of Chromatography A, 1093(1), 126-138.
Karlberg, M., de Souza, J. V., Fan, L., Kizhedath, A., Bronowska, A. K., & Glassey, J. (2020). Qsar implementation for hic retention time prediction of mabs using fab structure: A comparison between structural representations. International Journal of Molecular Sciences, 21(21), 8037.
Karlberg, M., von Stosch, M., & Glassey, J. (2018). Exploiting mab structure characteristics for a directed qbd implementation in early process development. Critical Reviews in Biotechnology, 38(6), 957-970.
Kelley, B. (2020). Developing therapeutic monoclonal antibodies at pandemic pace. Nature Biotechnology, 38(5), 540-545.
Kittelmann, J., Lang, K. M., Ottens, M., & Hubbuch, J. (2017a). Orientation of monoclonal antibodies in ion-exchange chromatography: A predictive quantitative structure-activity relationship modeling approach. Journal of Chromatography A, 1510, 33-39.
Kittelmann, J., Lang, K. M., Ottens, M., & Hubbuch, J. (2017b). An orientation sensitive approach in biomolecule interaction quantitative structure-activity relationship modeling and its application in ion-exchange chromatography. Journal of Chromatography A, 1482, 48-56.
Kizhedath, A., Karlberg, M., & Glassey, J. (2019). Cross-interaction chromatography-based qsar model for early-stage screening to facilitate enhanced developability of monoclonal antibody therapeutics. Biotechnology Journal, 14(8), 1800696.
Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. Physical Review E, 69(6), 066138.
Kumar, V., & Minz, S. (2014). Feature selection: A literature review. SmartCR, 4(3), 211-229.
Ladiwala, A., Rege, K., Breneman, C. M., & Cramer, S. M. (2005). A priori prediction of adsorption isotherm parameters and chromatographic behavior in ion-exchange systems. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11710-11715.
Luo, H., Cao, M., Newell, K., Afdahl, C., Wang, J., Wang, W. K., & Li, Y. (2015). Double-peak elution profile of a monoclonal antibody in cation exchange chromatography is caused by histidine-protonation-based charge variants. Journal of Chromatography A, 1424, 92-101.
Luo, H., Macapagal, N., Newell, K., Man, A., Parupudi, A., Li, Y., & Li, Y. (2014). Effects of salt-induced reversible self-association on the elution behavior of a monoclonal antibody in cation exchange chromatography. Journal of Chromatography A, 1362, 186-193.
MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge University Press.
Mazza, C., Sukumar, N., Breneman, C., & Cramer, S. (2001). Prediction of protein retention in ion-exchange systems using molecular descriptors obtained from crystal structure. Analytical Chemistry, 73(22), 5457-5461.
Mollerup, J. M., Hansen, T. B., Kidal, S., & Staby, A. (2008). Quality by design-thermodynamic modelling of chromatographic separation of proteins. Journal of Chromatography A, 1177(2), 200-206.
Morrison, C. (2020). Fresh from the biotech pipeline-2019. Nature Biotechnology, 38, 126-131.
Müller-Späth, T., Aumann, L., Melter, L., Ströhlein, G., & Morbidelli, M. (2008). Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnology and Bioengineering, 100(6), 1166-1177.
Narayanan, H., Luna, M. F., von Stosch, M., Cruz Bournazou, M. N., Polotti, G., Morbidelli, M., Butté, A., & Sokolov, M. (2020). Bioprocessing in the digital age: The role of process models. Biotechnology Journal, 15(1), 1900172.
Obrezanova, O., Csányi, G., Gola, J. M., & Segall, M. D. (2007). Gaussian processes: A method for automatic QSAR modeling of adme properties. Journal of Chemical Information and Modeling, 47(5), 1847-1857.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825-2830.
Pirrung, S. M., van der Wielen, L. A., van Beckhoven, R. F., van de Sandt, E. J., Eppink, M. H., & Ottens, M. (2017). Optimization of biopharmaceutical downstream processes supported by mechanistic models and artificial neural networks. Biotechnology Progress, 33(3), 696-707.
Rasmussen, C. (2006). CKI Williams Gaussian processes for machine learning.
Rathore, A. S., & Winkle, H. (2009). Quality by design for biopharmaceuticals. Nature Biotechnology, 27(1), 26-34.
Robinson, J., Roush, D., & Cramer, S. M. (2020). The effect of ph on antibody retention in multimodal cation exchange chromatographic systems. Journal of Chromatography A, 1617, 460838.
Robinson, J. R., Karkov, H. S., Woo, J. A., Krogh, B. O., & Cramer, S. M. (2017). Qsar models for prediction of chromatographic behavior of homologous fab variants. Biotechnology and Bioengineering, 114(6), 1231-1240.
Rodrigues, A. E. (1997). Permeable packings and perfusion chromatography in protein separation. Journal of Chromatography B: Biomedical Sciences and Applications, 699(1-2), 47-61.
Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). Opls3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863-1874.
Ross, B. C. (2014). Mutual information between discrete and continuous data sets. PloS One, 9(2), e87357.
Saleh, D., Hess, R., Ahlers-Hesse, M., Beckert, N., Schönberger, M., Rischawy, F., Wang, G., Bauer, J., Blech, M., Kluters, S., Studts, J., & Hubbuch, J. (2021). Modeling the impact of amino acid substitution in a monoclonal antibody on cation exchange chromatography. Biotechnology and Bioengineering, 118(8), 2923-2933.
Sankar, K., Krystek Jr., S. R., Carl, S. M., Day, T., & Maier, J. K. (2018). Aggscore: Prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins: Structure, Function, and Bioinformatics, 86(11), 1147-1156.
Sankar, K., Trainor, K., Blazer, L. L., Adams, J. J., Sidhu, S. S., Day, T., Meiering, E., & Maier, J. K. (2022). A descriptor set for quantitative structure-property relationship prediction in biologics. Molecular Informatics, 41(9), 2100240.
Saphire, E. O., Parren, P. W., Pantophlet, R., Zwick, M. B., Morris, G. M., Rudd, P. M., Dwek, R. A., Stanfield, R. L., Burton, D. R., & Wilson, I. A. (2001). Crystal structure of a neutralizing human igg against hiv-1: A template for vaccine design. Science, 293(5532), 1155-1159.
Scapin, G., Yang, X., Prosise, W. W., McCoy, M., Reichert, P., Johnston, J. M., Kashi, R. S., & Strickland, C. (2015). Structure of full-length human anti-pd1 therapeutic igg4 antibody pembrolizumab. Nature Structural & Molecular Biology, 22(12), 953-958.
Schmidt, M., Hafner, M., & Frech, C. (2014). Modeling of salt and ph gradient elution in ion-exchange chromatography. Journal of Separation Science, 37(1-2), 5-13.
Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A. W., Bridgland, A., Penedones, H., Petersen, S., Simonyan, K., Crossan, S., Kohli, P., Jones, D. T., Silver, D., Kavukcuogle, K., & Hassabis, D. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792), 706-710.
Shukla, A. A., Hubbard, B., Tressel, T., Guhan, S., & Low, D. (2007). Downstream processing of monoclonal antibodies-application of platform approaches. J Chromatogr B Analyt Technol Biomed Life Sci, 848(1), 28-39. https://doi.org/10.1016/j.702jchromb.2006.09.026.
Shukla, A. A., & Thömmes, J. (2010). Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends in Biotechnology, 28(5), 253-261.
Smiatek, J., Jung, A., & Bluhmki, E. (2020). Towards a digital bioprocess replica: Computational approaches in biopharmaceutical development and manufacturing. Trends in Biotechnology, 38(10), 1141-1153.
Velayudhan, A., & Horváth, C. (1988). Preparative chromatography of proteins: Analysis of the multivalent ion-exchange formalism. Journal of Chromatography A, 443, 13-29.
von Stosch, M., Portela, R. M., & Varsakelis, C. (2021). A roadmap to ai-driven in silico process development: Bioprocessing 4.0 in practice. Current Opinion in Chemical Engineering, 33, 100692.
Wang, C., Li, W., Drabek, D., Okba, N. M., van Haperen, R., Osterhaus, A. D., van Kuppeveld, F. J., Haagmans, B. L., Grosveld, F., & Bosch, B.-J. (2020). A human monoclonal antibody blocking sars-cov-2 infection. Nature Communications, 11(1), 1-6.
Wang, G., Briskot, T., Hahn, T., Baumann, P., & Hubbuch, J. (2017). Estimation of adsorption isotherm and mass transfer parameters in protein chromatography using artificial neural networks. Journal of Chromatography A, 1487, 211-217.
Weidle, U. H., Tiefenthaler, G., Weiss, E. H., Georges, G., & Brinkmann, U. (2013). The intriguing options of multispecific antibody formats for treatment of cancer. Cancer Genomics & Proteomics, 10(1), 1-18.
Yamamoto, S., Nakanishi, K., & Matsuno, R. (1988). Ion-exchange chromatography of proteins. CRC Press.
Yamamoto, S., Nakanishi, K., Matsuno, R., & Kamikubo, T. (1983). Ion exchange chromatography of proteins-prediction of elution curves and operating conditions. I. theoretical considerations. Biotechnology and Bioengineering, 25(6), 1465-1483.
Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software (TOMS), 23(4), 550-560.
Zhu, K., & Day, T. (2013). Ab initio structure prediction of the antibody hypervariable h3 loop. Proteins: Structure, Function, and Bioinformatics, 81(6), 1081-1089.
Zhu, K., Day, T., Warshaviak, D., Murrett, C., Friesner, R., & Pearlman, D. (2014). Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins: Structure, Function, and Bioinformatics, 82(8), 1646-1655.
Contributed Indexing:
Keywords: biopharmaceutical downstream processing; ion exchange chromatography; mechanistic chromatography modeling; multiscale modeling; quantitative structure-property relationships
Substance Nomenclature:
0 (Immunoglobulin G)
0 (Antibodies, Monoclonal)
Entry Date(s):
Date Created: 20221013 Date Completed: 20221207 Latest Revision: 20230208
Update Code:
20240104
DOI:
10.1002/bit.28258
PMID:
36226467
Czasopismo naukowe
The development of biopharmaceutical downstream processes relies on exhaustive experimental studies. The root cause is the poorly understood relationship between the protein structure of monoclonal antibodies (mAbs) and their macroscopic process behavior. Especially the development of preparative chromatography processes is challenged by the increasing structural complexity of novel antibody formats and accelerated development timelines. This study introduces a multiscale in silico model consisting of homology modeling, quantitative structure-property relationships (QSPR), and mechanistic chromatography modeling leading from the amino acid sequence of a mAb to the digital representation of its cation exchange chromatography (CEX) process. The model leverages the mAbs' structural characteristics and experimental data of a diverse set of 21 therapeutic antibodies to predict elution profiles of two mAbs that were removed from the training data set. QSPR modeling identified mAb-specific protein descriptors relevant for the prediction of the thermodynamic equilibrium and the stoichiometric coefficient of the adsorption reaction. The consideration of two discrete conformational states of IgG4 mAbs enabled prediction of split-peak elution profiles. Starting from the sequence, the presented multiscale model allows in silico development of chromatography processes before protein material is available for experimental studies.
(© 2022 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies