Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Biochemical and Structural Characterization of Chi-Class Glutathione Transferases: A Snapshot on the Glutathione Transferase Encoded by sll0067 Gene in the Cyanobacterium Synechocystis sp. Strain PCC 6803.

Tytuł:
Biochemical and Structural Characterization of Chi-Class Glutathione Transferases: A Snapshot on the Glutathione Transferase Encoded by sll0067 Gene in the Cyanobacterium Synechocystis sp. Strain PCC 6803.
Autorzy:
Mocchetti E; Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France.
Morette L; Université de Lorraine, INRAE, IAM, F-54000 Nancy, France.
Mulliert G; Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France.
Mathiot S; Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France.
Guillot B; Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France.
Dehez F; Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France.
Chauvat F; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France.
Cassier-Chauvat C; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France.
Brochier-Armanet C; Université de Lyon 1, CNRS, LBBE, F-69622 Villeurbanne, France.
Didierjean C; Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France.
Hecker A; Université de Lorraine, INRAE, IAM, F-54000 Nancy, France.
Źródło:
Biomolecules [Biomolecules] 2022 Oct 13; Vol. 12 (10). Date of Electronic Publication: 2022 Oct 13.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, 2011-
MeSH Terms:
Glutathione Transferase*/metabolism
Synechocystis*/genetics
Synechocystis*/metabolism
Pyruvaldehyde ; Glutathione/metabolism ; Protein Structure, Secondary
References:
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
J Comput Chem. 2010 Mar;31(4):671-90. (PMID: 19575467)
PLoS Biol. 2014 Apr 22;12(4):e1001843. (PMID: 24756107)
Plant Cell Rep. 2017 Jun;36(6):791-805. (PMID: 28391528)
Genome Res. 2004 Jun;14(6):1188-90. (PMID: 15173120)
Mol Biol Evol. 2020 May 1;37(5):1530-1534. (PMID: 32011700)
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. (PMID: 20124692)
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14. (PMID: 23793146)
Biochemistry. 2001 Feb 13;40(6):1567-76. (PMID: 11327815)
Biochem J. 1997 Feb 15;322 ( Pt 1):229-34. (PMID: 9078266)
Protein Sci. 2018 Jan;27(1):293-315. (PMID: 29067766)
mBio. 2020 Aug 4;11(4):. (PMID: 32753490)
Cell. 2009 Aug 21;138(4):774-86. (PMID: 19703402)
J Biol Chem. 2020 Jan 10;295(2):314-324. (PMID: 31796628)
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. (PMID: 21460441)
J Bacteriol. 2003 Mar;185(6):1768-75. (PMID: 12618439)
Nucleic Acids Res. 2016 Jul 8;44(W1):W351-5. (PMID: 27131377)
Front Plant Sci. 2019 May 22;10:608. (PMID: 31191562)
Annu Rev Pharmacol Toxicol. 2005;45:51-88. (PMID: 15822171)
Arabidopsis Book. 2010;8:e0131. (PMID: 22303257)
PLoS One. 2015 May 12;10(5):e0126811. (PMID: 25965384)
Fungal Genet Biol. 2015 Oct;83:103-112. (PMID: 26348000)
J Mol Graph. 1996 Feb;14(1):33-8, 27-8. (PMID: 8744570)
J Chem Theory Comput. 2015 Apr 14;11(4):1864-74. (PMID: 26574392)
BMC Evol Biol. 2010 Jul 13;10:210. (PMID: 20626897)
Sci Rep. 2018 May 31;8(1):8472. (PMID: 29855494)
Mol Biol Evol. 2008 Jul;25(7):1307-20. (PMID: 18367465)
FEBS Lett. 1999 Feb 26;445(2-3):347-50. (PMID: 10094487)
Acta Crystallogr D Struct Biol. 2021 Oct 1;77(Pt 10):1292-1304. (PMID: 34605432)
J Chem Phys. 2020 Jul 28;153(4):044130. (PMID: 32752662)
Oncogenesis. 2018 Jan 24;7(1):8. (PMID: 29362397)
FEBS J. 2009 Jan;276(1):58-75. (PMID: 19016852)
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):475-7. (PMID: 19407380)
J Comput Chem. 2009 Jul 30;30(10):1545-614. (PMID: 19444816)
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296. (PMID: 33885785)
Biochem J. 2001 Nov 15;360(Pt 1):1-16. (PMID: 11695986)
Microorganisms. 2020 May 11;8(5):. (PMID: 32403363)
J Biol Chem. 2000 Aug 11;275(32):24798-806. (PMID: 10783391)
Acta Crystallogr A. 2012 May;68(Pt 3):337-51. (PMID: 22514066)
Biochem J. 2007 Aug 15;406(1):115-23. (PMID: 17484723)
Chemistry. 2008;14(31):9591-8. (PMID: 18792041)
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. (PMID: 20383002)
Int J Syst Evol Microbiol. 2017 Mar;67(3):653-658. (PMID: 27902306)
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):368-80. (PMID: 22505257)
J Biol Chem. 1997 Oct 10;272(41):25518-23. (PMID: 9325266)
PLoS One. 2010 Mar 10;5(3):e9490. (PMID: 20224823)
J Biol Chem. 2011 Mar 18;286(11):9162-73. (PMID: 21177852)
Biochim Biophys Acta. 1994 Mar 16;1205(1):1-18. (PMID: 8142473)
J Phys Chem A. 2019 Aug 15;123(32):7156-7170. (PMID: 31294565)
Mol Biol Evol. 2016 Aug;33(8):2170-2. (PMID: 27189556)
Nucleic Acids Res. 2018 Jul 2;46(W1):W380-W386. (PMID: 29788129)
Sci Rep. 2021 May 11;11(1):9995. (PMID: 33976298)
Biochem Pharmacol. 2002 Sep;64(5-6):1065-9. (PMID: 12213606)
EMBO Rep. 2009 Dec;10(12):1320-6. (PMID: 19851333)
FEBS Lett. 2012 Nov 16;586(22):3944-50. (PMID: 23058289)
Front Mol Biosci. 2022 Aug 12;9:958586. (PMID: 36032685)
Front Plant Sci. 2014 Dec 23;5:712. (PMID: 25566286)
PLoS One. 2012;7(4):e34263. (PMID: 22496785)
Eur J Biochem. 1994 Mar 15;220(3):645-61. (PMID: 8143720)
Contributed Indexing:
Keywords: Synechocystis sp. PCC 6803; biochemistry; crystallography; cyanobacteria; glutathione; glutathione transferase; phylogeny
Substance Nomenclature:
EC 2.5.1.18 (Glutathione Transferase)
722KLD7415 (Pyruvaldehyde)
GAN16C9B8O (Glutathione)
Entry Date(s):
Date Created: 20221027 Date Completed: 20221028 Latest Revision: 20221222
Update Code:
20240105
PubMed Central ID:
PMC9599700
DOI:
10.3390/biom12101466
PMID:
36291676
Czasopismo naukowe
Glutathione transferases (GSTs) constitute a widespread superfamily of enzymes notably involved in detoxification processes and/or in specialized metabolism. In the cyanobacterium Synechocsytis sp. PCC 6803, SynGSTC1, a chi-class GST (GSTC), is thought to participate in the detoxification process of methylglyoxal, a toxic by-product of cellular metabolism. A comparative genomic analysis showed that GSTCs were present in all orders of cyanobacteria with the exception of the basal order Gloeobacterales. These enzymes were also detected in some marine and freshwater noncyanobacterial bacteria, probably as a result of horizontal gene transfer events. GSTCs were shorter of about 30 residues compared to most cytosolic GSTs and had a well-conserved SRAS motif in the active site ( 10 SRAS 13 in SynGSTC1). The crystal structure of SynGSTC1 in complex with glutathione adopted the canonical GST fold with a very open active site because the α4 and α5 helices were exceptionally short. A transferred multipolar electron-density analysis allowed a fine description of the solved structure. Unexpectedly, Ser10 did not have an electrostatic influence on glutathione as usually observed in serinyl-GSTs. The S10A variant was only slightly less efficient than the wild-type and molecular dynamics simulations suggested that S10 was a stabilizer of the protein backbone rather than an anchor site for glutathione.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies