Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Airborne particulate matter (PM 10 ) induces cell invasion through Aryl Hydrocarbon Receptor and Activator Protein 1 (AP-1) pathway deregulation in A549 lung epithelial cells.

Tytuł:
Airborne particulate matter (PM 10 ) induces cell invasion through Aryl Hydrocarbon Receptor and Activator Protein 1 (AP-1) pathway deregulation in A549 lung epithelial cells.
Autorzy:
Morales-Bárcenas R; Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México.
Sánchez-Pérez Y; Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México.
Santibáñez-Andrade M; Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México.
Chirino YI; Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090, Tlalnepantla de Baz, Estado de México, México.
Soto-Reyes E; Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Ciudad de México, México.
García-Cuellar CM; Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México. .
Źródło:
Molecular biology reports [Mol Biol Rep] 2023 Jan; Vol. 50 (1), pp. 107-119. Date of Electronic Publication: 2022 Oct 29.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Dordrecht, Boston, Reidel.
MeSH Terms:
Transcription Factor AP-1*/genetics
Particulate Matter*/toxicity
Humans ; A549 Cells ; Receptors, Aryl Hydrocarbon/genetics ; Receptors, Aryl Hydrocarbon/metabolism ; Matrix Metalloproteinase 9/genetics ; Matrix Metalloproteinase 9/metabolism ; Lung/metabolism ; Epithelial Cells/metabolism
References:
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA 3, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918. https://doi.org/10.1016/s0140-6736(17)30505-6. (PMID: 10.1016/s0140-6736(17)30505-6)
Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14:1262–1263. https://doi.org/10.1016/s1470-2045(13)70487-x. (PMID: 10.1016/s1470-2045(13)70487-x)
Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P (2016) Aeroparticles, Composition, and Lung Diseases. Front Immunol 7:3. https://doi.org/10.3389/fimmu.2016.00003. (PMID: 10.3389/fimmu.2016.00003)
Dockery DW, Pope CA 3rd (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132. https://doi.org/10.1146/annurev.pu.15.050194.000543. (PMID: 10.1146/annurev.pu.15.050194.000543)
Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:339–362. https://doi.org/10.1080/10590500802494538. (PMID: 10.1080/10590500802494538)
Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101. https://doi.org/10.1016/s0048-9697(99)00513-6. (PMID: 10.1016/s0048-9697(99)00513-6)
Chirino YI, Sanchez-Perez Y, Osornio-Vargas AR, Morales-Barcenas R, Gutierrez-Ruiz MC, Segura-Garcia Y, Rosas I, Pedraza-Chaverri J, Garcia-Cuellar CM (2010) PM(10) impairs the antioxidant defense system and exacerbates oxidative stress driven cell death. Toxicol Lett 193:209–216. https://doi.org/10.1016/j.toxlet.2010.01.009. (PMID: 10.1016/j.toxlet.2010.01.009)
Callén MS, de la Cruz MT, López JM, Mastral AM (2011) PAH in airborne particulate matter.: Carcinogenic character of PM10 samples and assessment of the energy generation impact. Fuel Processing Technology 92:176–182. https://doi.org/10.1016/j.fuproc.2010.05.019.
Esser C (2012) Biology and function of the aryl hydrocarbon receptor: report of an international and interdisciplinary conference. Arch Toxicol 86:1323-9. https://doi.org/10.1007/s00204-012-0818-2.
Moorthy B, Chu C, Carlin DJ (2015) Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 145:5–15. https://doi.org/10.1093/toxsci/kfv040. (PMID: 10.1093/toxsci/kfv040)
Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334. https://doi.org/10.1146/annurev.pharmtox.43.100901.135828. (PMID: 10.1146/annurev.pharmtox.43.100901.135828)
Dietrich C, Kaina B (2010) The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 31:1319–1328. https://doi.org/10.1093/carcin/bgq028. (PMID: 10.1093/carcin/bgq028)
Tsay JJ, Tchou-Wong KM, Greenberg AK, Pass H, Rom WN (2013) Aryl hydrocarbon receptor and lung cancer. Anticancer Res 33:1247–1256.
Puga A, Ma C, Marlowe JL (2009) The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 77:713–722. https://doi.org/10.1016/j.bcp.2008.08.031. (PMID: 10.1016/j.bcp.2008.08.031)
Hillegass JM, Murphy KA, Villano CM, White LA (2006) The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease. Biol Chem 387:1159–1173. https://doi.org/10.1515/bc.2006.144. (PMID: 10.1515/bc.2006.144)
Idowu O, Semple KT, Ramadass K, O’Connor W, Hansbro P, Thavamani P (2019) Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ Int 123:543–557. https://doi.org/10.1016/j.envint.2018.12.051. (PMID: 10.1016/j.envint.2018.12.051)
Hoffer A, Chang CY, Puga A (1996) Dioxin induces transcription of fos and jun genes by Ah receptor-dependent and -independent pathways. Toxicol Appl Pharmacol 141:238–247. https://doi.org/10.1006/taap.1996.0280. (PMID: 10.1006/taap.1996.0280)
Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136. https://doi.org/10.1038/ncb0502-e131. (PMID: 10.1038/ncb0502-e131)
Puga A, Nebert DW, Carrier F (1992) Dioxin induces expression of c-fos and c-jun proto-oncogenes and a large increase in transcription factor AP-1. DNA Cell Biol 11:269–281. https://doi.org/10.1089/dna.1992.11.269. (PMID: 10.1089/dna.1992.11.269)
Villano CM, Murphy KA, Akintobi A, White LA (2006) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells. Toxicol Appl Pharmacol 210:212–224. https://doi.org/10.1016/j.taap.2005.05.001. (PMID: 10.1016/j.taap.2005.05.001)
Sparfel L, Pinel-Marie ML, Boize M, Koscielny S, Desmots S, Pery A, Fardel O (2010) Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci 114:247–259. https://doi.org/10.1093/toxsci/kfq007. (PMID: 10.1093/toxsci/kfq007)
Salcido-Neyoy ME, Sánchez-Pérez Y, Osornio-Vargas AR, Gonsebatt ME, Meléndez-Zajgla J, Morales-Bárcenas R, Petrosyan P, Molina-Servin ED, Vega E, Manzano-León N, García-Cuellar CM (2015) Induction of c-Jun by air particulate matter (PM 10 ) of Mexico city: Participation of polycyclic aromatic hydrocarbons. Environ Pollut 203:175–182. https://doi.org/10.1016/j.envpol.2015.03.051. (PMID: 10.1016/j.envpol.2015.03.051)
Morales-Bárcenas R, Chirino YI, Sánchez-Pérez Y, Osornio-Vargas ÁR, Melendez-Zajgla J, Rosas I, García-Cuellar CM (2015) Particulate matter (PM 10 ) induces metalloprotease activity and invasion in airway epithelial cells. Toxicol Lett 237:167–173. https://doi.org/10.1016/j.toxlet.2015.06.001. (PMID: 10.1016/j.toxlet.2015.06.001)
Alfaro-Moreno E, Martínez L, García-Cuellar C, Bonner JC, Murray JC, Rosas I, Rosales SP, Osornio-Vargas AR (2002) Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ Health Perspect 110:715–720. https://doi.org/10.1289/ehp.02110715. (PMID: 10.1289/ehp.02110715)
Sánchez-Pérez Y, Chirino YI, Osornio-Vargas ÁR, Morales-Bárcenas R, Gutiérrez-Ruíz C, Vázquez-López I, García-Cuellar CM (2009) DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants. Cancer Lett 278:192–200. https://doi.org/10.1016/j.canlet.2009.01.010. (PMID: 10.1016/j.canlet.2009.01.010)
Chirino YI, Sanchez-Perez Y, Osornio-Vargas AR, Rosas I, Garcia-Cuellar CM (2015) Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City. Data Brief 4:353–356. https://doi.org/10.1016/j.dib.2015.06.017. (PMID: 10.1016/j.dib.2015.06.017)
Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243:359–366. https://doi.org/10.1006/excr.1998.4172. (PMID: 10.1006/excr.1998.4172)
Gualtieri M, Øvrevik J, Holme JA, Perrone MG, Bolzacchini E, Schwarze PE, Camatini M (2010) Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicol In Vitro 24:29–39. https://doi.org/10.1016/j.tiv.2009.09.013. (PMID: 10.1016/j.tiv.2009.09.013)
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85. https://doi.org/10.1016/0003-2697(85)90442-7. (PMID: 10.1016/0003-2697(85)90442-7)
Benbow U, Brinckerhoff CE (1997) The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 15:519 – 26. https://doi.org/10.1016/s0945-053x(97)90026-3.
Murphy KA, Villano CM, Dorn R, White LA (2004) Interaction between the aryl hydrocarbon receptor and retinoic acid pathways increases matrix metalloproteinase-1 expression in keratinocytes. J Biol Chem 279:25284–25293. https://doi.org/10.1074/jbc.M402168200. (PMID: 10.1074/jbc.M402168200)
Roztocil E, Hammond CL, Gonzalez MO, Feldon SE, Woeller CF (2020) The aryl hydrocarbon receptor pathway controls matrix metalloproteinase-1 and collagen levels in human orbital fibroblasts. Sci Rep 10:8477. https://doi.org/10.1038/s41598-020-65414-1. (PMID: 10.1038/s41598-020-65414-1)
Lallemand D, Spyrou G, Yaniv M, Pfarr CM (1997) Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 14:819–830. https://doi.org/10.1038/sj.onc.1200901. (PMID: 10.1038/sj.onc.1200901)
Sundqvist A, Vasilaki E, Voytyuk O, Bai Y, Morikawa M, Moustakas A, Miyazono K, Heldin CH, Ten Dijke P, van Dam H (2020) TGFbeta and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene 39:4436–4449. https://doi.org/10.1038/s41388-020-1299-z. (PMID: 10.1038/s41388-020-1299-z)
Yao CD, Haensel D, Gaddam S, Patel T, Atwood SX, Sarin KY, Whitson RJ, McKellar S, Shankar G, Aasi S, Rieger K, Oro AE (2020) AP-1 and TGFss cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat Commun 11:5079. https://doi.org/10.1038/s41467-020-18762-5. (PMID: 10.1038/s41467-020-18762-5)
Qiao Y, He H, Jonsson P, Sinha I, Zhao C, Dahlman-Wright K (2016) AP-1 Is a Key Regulator of Proinflammatory Cytokine TNFalpha-mediated Triple-negative Breast Cancer Progression. J Biol Chem 291:5068–5079. https://doi.org/10.1074/jbc.M115.702571. (PMID: 10.1074/jbc.M115.702571)
Alfaro-Moreno E, Torres V, Miranda J, Martínez L, García-Cuellar C, Nawrot TS, Vanaudenaerde B, Hoet P, Ramírez-López P, Rosas I, Nemery B, Osornio-Vargas AR (2009) Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling. Environ Res 109:528–535. https://doi.org/10.1016/j.envres.2009.02.010. (PMID: 10.1016/j.envres.2009.02.010)
Kyung SY, Yoon JY, Kim YJ, Lee SP, Park JW, Jeong SH (2012) Asian Dust Particles Induce TGF-β(1) via Reactive Oxygen Species in Bronchial Epithelial Cells. Tuberc Respir Dis (Seoul) 73:84–92. https://doi.org/10.4046/trd.2012.73.2.84. (PMID: 10.4046/trd.2012.73.2.84)
Tong F, Zhang H (2018) Pulmonary Exposure to Particulate Matter (PM2.5) Affects the Sensitivity to Myocardial Ischemia/Reperfusion Injury Through Farnesoid-X-Receptor-Induced Autophagy. Cell Physiol Biochem 46:1493–1507. https://doi.org/10.1159/000489192. (PMID: 10.1159/000489192)
Atafar Z, Pourpak Z, Yunesian M, Nicknam MH, Hassanvand MS, Soleimanifar N, Saghafi S, Alizadeh Z, Rezaei S, Ghanbarian M, Ghozikali MG, Osornio-Vargas AR, Naddafi K (2019) Proinflammatory effects of dust storm and thermal inversion particulate matter (PM(10)) on human peripheral blood mononuclear cells (PBMCs) in vitro: a comparative approach and analysis. J Environ Health Sci Eng 17:433–444. https://doi.org/10.1007/s40201-019-00362-1. (PMID: 10.1007/s40201-019-00362-1)
Tsai DH, Riediker M, Berchet A, Paccaud F, Waeber G, Vollenweider P, Bochud M (2019) Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ Sci Pollut Res Int 26:19697–19704. https://doi.org/10.1007/s11356-019-05194-y. (PMID: 10.1007/s11356-019-05194-y)
Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400. https://doi.org/10.1038/sj.onc.1204383. (PMID: 10.1038/sj.onc.1204383)
Weiss C, Faust D, Schreck I, Ruff A, Farwerck T, Melenberg A, Schneider S, Oesch-Bartlomowicz B, Zatloukalová J, Vondrácek J, Oesch F, Dietrich C (2008) TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A. Oncogene 27:2198–2207. https://doi.org/10.1038/sj.onc.1210859. (PMID: 10.1038/sj.onc.1210859)
Peng TL, Chen J, Mao W, Song X, Chen MH (2009) Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9. BMC Cell Biol 10:27. https://doi.org/10.1186/1471-2121-10-27. (PMID: 10.1186/1471-2121-10-27)
Adiseshaiah P, Vaz M, Machireddy N, Kalvakolanu DV, Reddy SP (2008) A Fra-1-dependent, matrix metalloproteinase driven EGFR activation promotes human lung epithelial cell motility and invasion. J Cell Physiol 216:405–412. https://doi.org/10.1002/jcp.21410. (PMID: 10.1002/jcp.21410)
Deng T, Karin M (1993) JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes Dev 7:479–490. https://doi.org/10.1101/gad.7.3.479. (PMID: 10.1101/gad.7.3.479)
Lin G, Yu B, Liang Z, Li L, Qu S, Chen K, Zhou L, Lu Q, Sun Y, Zhu X (2018) Silencing of c-jun decreases cell migration, invasion, and EMT in radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Onco Targets Ther 11:3805–3815. https://doi.org/10.2147/OTT.S162700. (PMID: 10.2147/OTT.S162700)
Papavassiliou AG, Musti AM (2020) The Multifaceted Output of c-Jun Biological Activity: Focus at the Junction of CD8 T Cell Activation and Exhaustion. Cells 9. https://doi.org/10.3390/cells9112470.
Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K, Bedard A, Tenen DG, Hoang T (2007) c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 27:2919–2933. https://doi.org/10.1128/MCB.00936-06. (PMID: 10.1128/MCB.00936-06)
Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ (2006) c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol 37:668–674. https://doi.org/10.1016/j.humpath.2006.01.022. (PMID: 10.1016/j.humpath.2006.01.022)
Bamberger AM, Methner C, Lisboa BW, Städtler C, Schulte HM, Löning T and Milde-Langosch K (1999) Expression pattern of the AP-1 family in breast cancer: association of fosB expression with a well-differentiated, receptor-positive tumor phenotype. Int J Cancer 84:533-8. https://doi.org/10.1002/(sici)1097-0215(19991022)84:5%3C533::aid-ijc16%E3.0.co;2-j.
Rattanasinchai C, Llewellyn BJ, Conrad SE, Gallo KA (2017) MLK3 regulates FRA-1 and MMPs to drive invasion and transendothelial migration in triple-negative breast cancer cells. Oncogenesis 6:e345. https://doi.org/10.1038/oncsis.2017.44. (PMID: 10.1038/oncsis.2017.44)
Ibrahim SAE, Abudu A, Johnson E, Aftab N, Conrad S, Fluck M (2018) The role of AP-1 in self-sufficient proliferation and migration of cancer cells and its potential impact on an autocrine/paracrine loop. Oncotarget 9:34259–34278. https://doi.org/10.18632/oncotarget.26047. (PMID: 10.18632/oncotarget.26047)
Cheng F, Su L, Yao C, Liu L, Shen J, Liu C, Chen X, Luo Y, Jiang L, Shan J, Chen J, Zhu W, Shao J, Qian C (2016) SIRT1 promotes epithelial-mesenchymal transition and metastasis in colorectal cancer by regulating Fra-1 expression. Cancer Lett 375:274–283. https://doi.org/10.1016/j.canlet.2016.03.010. (PMID: 10.1016/j.canlet.2016.03.010)
Krishna A, Bhatt MLB, Singh V, Singh S, Gangwar PK, Singh US, Kumar V, Mehrotra D (2018) Differential Expression of c-fos Proto-Oncogene in Normal Oral Mucosa versus Squamous Cell Carcinoma. Asian Pac J Cancer Prev 19:867–874. https://doi.org/10.22034/apjcp.2018.19.3.867. (PMID: 10.22034/apjcp.2018.19.3.867)
Ruiz EJ, Lan L, Diefenbacher ME, Riising EM, Da Costa C, Chakraborty A, Hoeck JD, Spencer-Dene B, Kelly G, David JP, Nye E, Downward J, Behrens A (2021) JunD, not c-Jun, is the AP-1 transcription factor required for Ras-induced lung cancer. JCI Insight 6. https://doi.org/10.1172/jci.insight.124985.
Lee GH, Jin SW, Choi JH, Han EH, Hwang YP, Choi CY, Jeong HG (2021) Influence of o,p’-DDT on MUC5AC expression via regulation of NF-κB/AP-1 activation in human lung epithelial cells. J Toxicol Environ Health A 84:836–845. https://doi.org/10.1080/15287394.2021.1944943. (PMID: 10.1080/15287394.2021.1944943)
Tellez CS, Juri DE, Phillips LM, Do K, Thomas CL, Willink R, Dye WW, Wu G, Zhou Y, Irshad H, Kishida S, Kiyono T, Belinsky SA (2021) Comparative Genotoxicity and Mutagenicity of Cigarette, Cigarillo, and Shisha Tobacco Products in Epithelial and Cardiac Cells. Toxicol Sci 184:67–82. https://doi.org/10.1093/toxsci/kfab101. (PMID: 10.1093/toxsci/kfab101)
O’Farrell HE, Brown R, Brown Z, Milijevic B, Ristovski ZD, Bowman RV, Fong KM, Vaughan A, Yang IA (2021) E-cigarettes induce toxicity comparable to tobacco cigarettes in airway epithelium from patients with COPD. Toxicol In Vitro 75:105204. https://doi.org/10.1016/j.tiv.2021.105204. (PMID: 10.1016/j.tiv.2021.105204)
Win-Shwe TT, Fujimaki H (2015) Activation of transcription factors in a mouse lung following exposure to environmental chemical and biological agents. J Toxicol Sci 40:559–568. https://doi.org/10.2131/jts.40.559. (PMID: 10.2131/jts.40.559)
Schutte J, Viallet J, Nau M, Segal S, Fedorko J, Minna J (1989) jun-B inhibits and c-fos stimulates the transforming and trans-activating activities of c-jun. Cell 59:987–997. https://doi.org/10.1016/0092-8674(89)90755-1. (PMID: 10.1016/0092-8674(89)90755-1)
Tang C, Jiang Y, Shao W, Shi W, Gao X, Qin W, Jiang T, Wang F, Feng S (2016) Abnormal expression of FOSB correlates with tumor progression and poor survival in patients with gastric cancer. Int J Oncol 49:1489–1496. https://doi.org/10.3892/ijo.2016.3661. (PMID: 10.3892/ijo.2016.3661)
Chirino YI, Garcia-Cuellar CM, Garcia-Garcia C, Soto-Reyes E, Osornio-Vargas AR, Herrera LA, Lopez-Saavedra A, Miranda J, Quintana-Belmares R, Perez IR, Sanchez-Perez Y (2017) Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells. Toxicol Lett 272:29–37. https://doi.org/10.1016/j.toxlet.2017.03.002. (PMID: 10.1016/j.toxlet.2017.03.002)
Garcia-Cuellar CM, Santibanez-Andrade M, Chirino YI, Quintana-Belmares R, Morales-Barcenas R, Quezada-Maldonado EM, Sanchez-Perez Y (2021) Particulate Matter (PM10) Promotes Cell Invasion through Epithelial-Mesenchymal Transition (EMT) by TGF-beta Activation in A549 Lung Cells. Int J Mol Sci 22. https://doi.org/10.3390/ijms222312632.
Mahner S, Baasch C, Schwarz J, Hein S, Wolber L, Janicke F, Milde-Langosch K (2008) C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer 99:1269–1275. https://doi.org/10.1038/sj.bjc.6604650. (PMID: 10.1038/sj.bjc.6604650)
Quezada-Maldonado EM, Sanchez-Perez Y, Chirino YI, Vaca-Paniagua F, Garcia-Cuellar CM (2018) miRNAs deregulation in lung cells exposed to airborne particulate matter (PM10) is associated with pathways deregulated in lung tumors. Environ Pollut 241:351–358. https://doi.org/10.1016/j.envpol.2018.05.073. (PMID: 10.1016/j.envpol.2018.05.073)
Santibanez-Andrade M, Sanchez-Perez Y, Chirino YI, Morales-Barcenas R, Herrera LA, Garcia-Cuellar CM (2019) Airborne particulate matter induces mitotic slippage and chromosomal missegregation through disruption of the spindle assembly checkpoint (SAC). Chemosphere 235:794–804. https://doi.org/10.1016/j.chemosphere.2019.06.232. (PMID: 10.1016/j.chemosphere.2019.06.232)
Santibanez-Andrade M, Sanchez-Perez Y, Chirino YI, Morales-Barcenas R, Quintana-Belmares R, Garcia-Cuellar CM (2022) Particulate matter (PM10) destabilizes mitotic spindle through downregulation of SETD2 in A549 lung cancer cells. Chemosphere 295:133900. https://doi.org/10.1016/j.chemosphere.2022.133900. (PMID: 10.1016/j.chemosphere.2022.133900)
Li N, Hao M, Phalen RF, Hinds WC, Nel AE (2003) Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 109:250–265. https://doi.org/10.1016/j.clim.2003.08.006. (PMID: 10.1016/j.clim.2003.08.006)
Ferecatu I, Borot MC, Bossard C, Leroux M, Boggetto N, Marano F, Baeza-Squiban A, Andreau K (2010) Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Part Fibre Toxicol 7:18. https://doi.org/10.1186/1743-8977-7-18. (PMID: 10.1186/1743-8977-7-18)
Contributed Indexing:
Keywords: Activator protein 1 (AP-1); Aryl hydrocarbon receptor (AhR); Cellular invasion.; MMP-9; PM10
Substance Nomenclature:
0 (Transcription Factor AP-1)
0 (Particulate Matter)
0 (Receptors, Aryl Hydrocarbon)
EC 3.4.24.35 (Matrix Metalloproteinase 9)
Entry Date(s):
Date Created: 20221030 Date Completed: 20230131 Latest Revision: 20230202
Update Code:
20240105
DOI:
10.1007/s11033-022-07986-x
PMID:
36309615
Czasopismo naukowe
Background: Particulate matter with an aerodynamic size ≤ 10 μm (PM 10 ) is a risk factor for lung cancer development, mainly because some components are highly toxic. Polycyclic aromatic hydrocarbons (PAHs) are present in PM 10 , such as benzo[a]pyrene (BaP), which is a well-known genotoxic and carcinogenic compound to humans, capable of activating AP-1 transcription factor family genes through the Aryl Hydrocarbon Receptor (AhR). Because effects of BaP include metalloprotease 9 (MMP-9) activation, cell invasion, and other pathways related to carcinogenesis, we aimed to demonstrate that PM 10 (10 µg/cm 2 ) exposure induces the activation of AP-1 family members as well as cell invasion in lung epithelial cells, through AhR pathway.
Methods and Results: The role of the AhR gene in cells exposed to PM 10 (10 µg/cm 2 ) and BaP (1µM) for 48 h was evaluated using AhR-targeted interference siRNA. Then, the AP-1 family members (c-Jun, Jun B, Jun D, Fos B, C-Fos, and Fra-1), the levels/activity of MMP-9, and cell invasion were analyzed. We found that PM 10 increased AhR levels and promoted its nuclear localization in A549 treated cells. Also, PM 10 and BaP deregulated the activity of AP-1 family members. Moreover, PM 10 upregulated the secretion and activity of MMP-9 through AhR, while BaP had no effect. Finally, we found that cell invasion in A549 cells exposed to PM 10 and BaP is modulated by AhR.
Conclusion: Our results demonstrated that PM 10 exposure induces upregulation of the c-Jun, Jun B, and Fra-1 activity, the expression/activity of MMP-9, and the cell invasion in lung epithelial cells, effects mediated through the AhR. Also, the Fos B and C-Fos activity were downregulated. In addition, the effects induced by PM 10 exposure were like those induced by BaP, which highlights the potentially toxic effects of the PM 10 mixture in lung epithelial cells.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies