Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Altered brain connectivity during visual stimulation in schizophrenia.

Tytuł:
Altered brain connectivity during visual stimulation in schizophrenia.
Autorzy:
Galdino LB; Laboratory of Perception, Neurosciences and Behaviour, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil. .; Neurobiology of Vision Lab, Brain Institute (ICe), Federal University of Rio Grande do Norte, Natal, Brazil. .
Fernandes T; Laboratory of Perception, Neurosciences and Behaviour, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.
Schmidt KE; Neurobiology of Vision Lab, Brain Institute (ICe), Federal University of Rio Grande do Norte, Natal, Brazil.
Santos NA; Laboratory of Perception, Neurosciences and Behaviour, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.
Źródło:
Experimental brain research [Exp Brain Res] 2022 Dec; Vol. 240 (12), pp. 3327-3337. Date of Electronic Publication: 2022 Nov 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer Verlag
MeSH Terms:
Brain Mapping*/methods
Electroencephalography*
Photic Stimulation*
Schizophrenia*/complications
Schizophrenia*/diagnosis
Schizophrenia*/physiopathology
Neural Pathways*/physiopathology
Adult ; Humans ; Brain/physiopathology ; Middle Aged ; Adolescent ; Young Adult ; Evoked Potentials, Visual
References:
Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore ET (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4:147. https://doi.org/10.3389/fnsys.2010.00147. (PMID: 10.3389/fnsys.2010.00147210310302965020)
Ali AS, Radwan AG, Soliman AM (2013) Fractional order Butterworth filter: active and passive realizations. IEEE J Emerg Sel Top Circuits Syst 3(3):346–354. (PMID: 10.1109/JETCAS.2013.2266753)
Almeida NL, Fernandes TP, Lima EH, Sales HF, Santos NA (2019) Combined influence of illness duration and medication type on visual sensitivity in schizophrenia. Braz J Psychiatry 42:27–32. (PMID: 10.1590/1516-4446-2018-03316986493)
Almeida NL, Rodrigues SJ, Gonçalves LM, Silverstein SM, Sousa IC, Gomes GH, Butler PD, Fernandes TP, Santos NA (2020) Opposite effects of smoking and nicotine intake on cognition. Psychiatry Res 293:113357. https://doi.org/10.1016/j.psychres.2020.113357. (PMID: 10.1016/j.psychres.2020.11335732823200)
Banea OC, Bandeira Dos Santos LG, Marcu S, Stefánnson SB, Wassermann EM, Ívarsson E, Jónasson VD, Aubonnet R, Jónasson AD, Magnúsdóttir BB, Haraldsson M, Gargiulo P (2022) Network signatures of rTMS treatmentin patients with schizophrenia and auditory verbal hallucination during an auditory-motor task using HD-EEG. SchizophreniaRes 243:310–314. https://doi.org/10.1016/j.schres.2021.06.002. (PMID: 10.1016/j.schres.2021.06.002)
Bassett DS, Bullmore ET (2017) Small-world brain networks revisited. Neuroscientist 23(5):499–516. (PMID: 10.1177/107385841666772027655008)
Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci off J Soc Neurosci 28(37):9239–9248. https://doi.org/10.1523/JNEUROSCI.1929-08.2008. (PMID: 10.1523/JNEUROSCI.1929-08.2008)
Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. https://doi.org/10.1038/nrn2575. (PMID: 10.1038/nrn257519190637)
Butler PD, Javitt DC (2005) Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry 18(2):151. (PMID: 10.1097/00001504-200503000-00008166391681994776)
Butler PD, Schechter I, Zemon V, Schwartz SG, Greenstein VC, Gordon J, Schroeder CE, Javitt DC (2001) Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry 158(7):1126–1133. https://doi.org/10.1176/appi.ajp.158.7.1126. (PMID: 10.1176/appi.ajp.158.7.112611431235)
Butler PD, Silverstein SM, Dakin SC (2008) Visual perception and its impairment in schizophrenia. Biol Psychiat 64(1):40–47. https://doi.org/10.1016/j.biopsych.2008.03.023. (PMID: 10.1016/j.biopsych.2008.03.02318549875)
Çavuş I, Reinhart RMG, Roach BJ, Gueorguieva R, Teyler T, Clapp WC, Ford JM, Krystal JH, Mathalon DH (2012) Impaired visual cortical plasticity in schizophrenia. Biol Psychiat 71(6):512–520. https://doi.org/10.1016/j.biopsych.2012.01.013. (PMID: 10.1016/j.biopsych.2012.01.01322364738)
Clementz BA, Keil A, Kissler J (2004) Aberrant brain dynamics in schizophrenia: delayed buildup and prolonged decay of the visual steady-state response. Cogn Brain Res 18(2):121–129. (PMID: 10.1016/j.cogbrainres.2003.09.007)
Davison J, O’Gorman A, Brennan L, Cotter DR (2018) A systematic review of metabolite biomarkers of schizophrenia. Schizophr Res 195:32–50. https://doi.org/10.1016/j.schres.2017.09.021. (PMID: 10.1016/j.schres.2017.09.02128947341)
Demmin DL, Davis Q, Roché M, Silverstein SM (2018) Electroretinographic anomalies in schizophrenia. J Abnorm Psychol 127(4):417. (PMID: 10.1037/abn000034729745706)
Dorph-Petersen KA, Caric D, Saghafi R, Zhang W, Sampson AR, Lewis DA (2009) Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol 117(4):369–384. (PMID: 10.1007/s00401-008-0410-218642008)
Fernandes TM de P, Souza RM da Ce, Santos NA dos (2018a) Visual function alterations in epilepsy secondary to migraine with aura: a case report. Psychol Neurosci 11(1):86–94. https://doi.org/10.1037/pne0000121.
Fernandes TMP, Silverstein SM, de Almeida NL, Dos Santos NA (2018b) Psychophysical evaluation of contrast sensitivity using Gabor patches in tobacco addiction. J Clin Neurosci 57:68–73. (PMID: 10.1016/j.jocn.2018.08.03430195990)
Fernandes TMP, Silverstein SM, Butler PD, Kéri S, Santos LG, Nogueira RL, Santos NA (2019a) Color vision impairments in schizophrenia and the role of antipsychotic medication type. Schizophr Res 204:162–170. https://doi.org/10.1016/j.schres.2018.09.002. (PMID: 10.1016/j.schres.2018.09.00230201549)
Fernandes TP, Shaqiri A, Brand A, Nogueira RL, Herzog MH, Roinishvili M, Santos NA, Chkonia E (2019b) Schizophrenia patients using atypical medication perform better in visual tasks than patients using typical medication. Psychiatry Res 275:31–38. https://doi.org/10.1016/j.psychres.2019.03.008. (PMID: 10.1016/j.psychres.2019.03.00830878854)
Fernandes TP, Shoshina II, Oliveira M, Andreevna VE, Silva GM, Santos NA (2022) Correlates of clinical variables on earlystagevisual processing in schizophrenia and bipolar disorder. J Psychiatric Res 149:323–330. https://doi.org/10.1016/j.jpsychires.2022.03.014. (PMID: 10.1016/j.jpsychires.2022.03.014)
Foxe JJ, Doniger GM, Javitt DC (2001) Early visual processing deficits in schizophrenia: Impaired P1 generation revealed by high-density electrical mapping. NeuroReport 12(17):3815–3820. https://doi.org/10.1097/00001756-200112040-00043. (PMID: 10.1097/00001756-200112040-0004311726801)
Friston KJ (2002) Dysfunctional connectivity in schizophrenia. World Psychiatry 1(2):66–71. (PMID: 169468551489874)
González-Hernández JA, Pita-Alcorta C, Wolters CH, Padrón A, Finalé A, Galán-García L, Lencer R (2015) Specificity and sensitivity of visual evoked potentials in the diagnosis of schizophrenia: rethinking VEPs. Schizophr Res 166(1–3):231–234. (PMID: 10.1016/j.schres.2015.05.00726004691)
Hadley JA, Kraguljac NV, White DM, Ver Hoef L, Tabora J, Lahti AC (2016) Change in brain network topology as a function of treatment response in schizophrenia: a longitudinal resting-state fMRI study using graph theory. NPJ Schizophr 2:16014. https://doi.org/10.1038/npjschz.2016.14. (PMID: 10.1038/npjschz.2016.14273360564898893)
Hilgetag CC, Goulas A (2016) Is the brain really a small-world network? Brain Struct Funct 221(4):2361–2366. https://doi.org/10.1007/s00429-015-1035-6. (PMID: 10.1007/s00429-015-1035-625894630)
Ishihara S (1973) The series of plates designed as a test for colour-blindness. Kanehara Shuppan Co. Ltd., Tokyo.
Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. Neuroimage 34(4):1600–1611. https://doi.org/10.1016/j.neuroimage.2006.09.024. (PMID: 10.1016/j.neuroimage.2006.09.02417207640)
Kambeitz J, Kambeitz-Ilankovic L, Cabral C, Dwyer DB, Calhoun VD, van den Heuvel MP, Falkai P, Koutsouleris N, Malchow B (2016) Aberrant functional whole-brain network architecture in patients with schizophrenia: a meta-analysis. Schizophr Bull 42(Suppl 1):S13-21. https://doi.org/10.1093/schbul/sbv174. (PMID: 10.1093/schbul/sbv174274606154960431)
Kemner C, Foxe JJ, Tankink JE, Kahn RS, Lamme VA (2009) Abnormal timing of visual feedback processing in young adults with schizophrenia. Neuropsychologia 47(14):3105–3110. (PMID: 10.1016/j.neuropsychologia.2009.07.00919631672)
Kéri S, Antal A, Szekeres G, Benedek G, Janka Z (2002) Spatiotemporal visual processing in schizophrenia. J Neuropsychiatry Clin Neurosci 14(2):190–196. https://doi.org/10.1176/jnp.14.2.190. (PMID: 10.1176/jnp.14.2.19011983794)
Lai C-Y, Scarr E, Udawela M, Everall I, Chen WJ, Dean B (2016) Biomarkers in schizophrenia: a focus on blood based diagnostics and theranostics. World J Psychiatry 6(1):102–117. https://doi.org/10.5498/wjp.v6.i1.102. (PMID: 10.5498/wjp.v6.i1.102270146014804259)
Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers inpsychology 4:863. https://doi.org/10.3389/fpsyg.2013.00863. (PMID: 10.3389/fpsyg.2013.00863)
Lalor EC, De Sanctis P, Krakowski MI, Foxe JJ (2012) Visual sensory processing deficits in schizophrenia: is there anything to the magnocellular account? Schizophr Res 139(1–3):246–252. (PMID: 10.1016/j.schres.2012.05.022227046443393820)
Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain J Neurol 131(Pt 4):945–961. https://doi.org/10.1093/brain/awn018. (PMID: 10.1093/brain/awn018)
Luo X, Guo L, Dai XJ, Wang Q, Zhu W, Miao X, Gong H (2017) Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxel-wise degree centrality analysis. Neuropsychiatr Dis Treat 13:2011. (PMID: 10.2147/NDT.S142742288148705546828)
Lynall M-E, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci off J Soc Neurosci 30(28):9477–9487. https://doi.org/10.1523/JNEUROSCI.0333-10.2010. (PMID: 10.1523/JNEUROSCI.0333-10.2010)
Mathalon DH, Ford JM, Pfefferbaum A (2000) Trait and state aspects of P300 amplitude reduction in schizophrenia: a retrospective longitudinal study. Biol Psychiat 47(5):434–449. https://doi.org/10.1016/s0006-3223(99)00277-2. (PMID: 10.1016/s0006-3223(99)00277-210704955)
Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87(1):60–66. https://doi.org/10.1016/j.schres.2006.06.028. (PMID: 10.1016/j.schres.2006.06.02816875801)
Murphy M, Öngür D (2019) Decreased peak alpha frequency and impaired visual evoked potentials in first episode psychosis. NeuroImage Clin 22:101693. https://doi.org/10.1016/j.nicl.2019.101693. (PMID: 10.1016/j.nicl.2019.101693308257106396327)
Narr KL, Leaver AM (2015) Connectome and schizophrenia. Curr Opin Psychiatry 28(3):229–235. (PMID: 10.1097/YCO.000000000000015725768086)
Olejarczyk E, Jernajczyk W (2017) Graph-based analysis of brain connectivity in schizophrenia. PLoS One 12(11):e0188629. https://doi.org/10.1371/journal.pone.0188629. (PMID: 10.1371/journal.pone.0188629291907595708839)
Oliveira MEC, Almeida NL, Fernandes TP, Santos NA (2021) Relation between smoking and visual processing in bipolar disorder. J Addict Dis. https://doi.org/10.1080/10550887.2021.1927445. (PMID: 10.1080/10550887.2021.192744534338615)
Peirce JW (2009) Generating Stimuli for Neuroscience Using PsychoPy. Frontiers Neuroinformatics 2:10. https://doi.org/10.3389/neuro.11.010.2008. (PMID: 10.3389/neuro.11.010.2008191986662636899)
Pion-Tonachini L, Kreutz-Delgado K, Makeig S (2019) ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 198:181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026. (PMID: 10.1016/j.neuroimage.2019.05.02631103785)
Ristanović D, Hajduković R (1981) Effects of spatially structured stimulus fields on pattern reversal visual evoked potentials. Electroencephalogr Clin Neurophysiol 51(6):599–610. (PMID: 10.1016/0013-4694(81)90204-26165561)
Rolls ET, Cheng W, Gilson M, Gong W, Deco G, Lo C-YZ, Yang AC, Tsai S-J, Liu M-E, Lin C-P, Feng J (2020) Beyond the disconnectivity hypothesis of schizophrenia. Cerebral Cortex (new York, N.y.: 1991) 30(3):1213–1233. https://doi.org/10.1093/cercor/bhz161. (PMID: 10.1093/cercor/bhz161)
Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003. (PMID: 10.1016/j.neuroimage.2009.10.00319819337)
Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AW, Williams LM, Breakspear M (2009) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30(2):403–416. (PMID: 10.1002/hbm.2051718072237)
Shim M, Kim D-W, Lee S-H, Im C-H (2014) Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia. Schizophr Res 156(2–3):197–203. https://doi.org/10.1016/j.schres.2014.04.012. (PMID: 10.1016/j.schres.2014.04.01224819192)
Shoshina II, Almeida NL, Oliveira ME, Trombetta BN, Silva GM, Fars J, Fernandes TP (2022) Serum levels of olanzapine are associated with acute cognitive effects in bipolar disorder. Psychiatry Res 310:114443. (PMID: 10.1016/j.psychres.2022.11444335286918)
Silverstein SM, Rosen R (2015) Schizophrenia and the eye. Schizophr Res Cogn 2(2):46–55. (PMID: 10.1016/j.scog.2015.03.004263455254559409)
Shoshina II, Hovis JK, Felisberti FM, Santos NA, Adreeva A, Butler PD, Fernandes TP (2021) Visual processing and BDNFlevels in first-episode schizophrenia. Psychiatry research 305: https://doi.org/10.1016/j.psychres.2021.114200. (PMID: 10.1016/j.psychres.2021.11420034653830)
Smith MJ, Wang L, Cronenwett W, Mamah D, Barch DM, Csernansky JG (2011) Thalamic morphology in schizophrenia and schizoaffective disorder. J Psychiatr Res 45(3):378–385. (PMID: 10.1016/j.jpsychires.2010.08.00320797731)
Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2):145–162. https://doi.org/10.1385/NI:2:2:145. (PMID: 10.1385/NI:2:2:14515319512)
Tomasi D, Volkow ND (2014) Mapping small-world properties through development in the human brain: disruption in schizophrenia. PLoS One 9(4):e96176. https://doi.org/10.1371/journal.pone.0096176. (PMID: 10.1371/journal.pone.0096176247888154005771)
van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Pol HEH (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30(47):15915–15926. https://doi.org/10.1523/JNEUROSCI.2874-10.2010. (PMID: 10.1523/JNEUROSCI.2874-10.2010211068306633761)
Wang Q, Su T-P, Zhou Y, Chou K-H, Chen I-Y, Jiang T, Lin C-P (2012) Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage 59(2):1085–1093. https://doi.org/10.1016/j.neuroimage.2011.09.035. (PMID: 10.1016/j.neuroimage.2011.09.03521963918)
Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD, Carter CS (2010) GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 30(10):3777–3781. (PMID: 10.1523/JNEUROSCI.6158-09.2010202200122846788)
Yu Q, Sui J, Rachakonda S, He H, Pearlson G, Calhoun VD (2011) Altered small-world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task. Front Syst Neurosci 5:7. https://doi.org/10.3389/fnsys.2011.00007. (PMID: 10.3389/fnsys.2011.00007213693553037777)
Yu Q, Allen EA, Sui J, Arbabshirani RM, Pearlson GD, Calhoun V (2012) Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging. Curr Top Med Chem 12(21):2415–2425. (PMID: 10.2174/156802612805289890232791804429862)
Zhang Y, Lin L, Lin C-P, Zhou Y, Chou K-H, Lo C-Y, Su T-P, Jiang T (2012) Abnormal topological organization of structural brain networks in schizophrenia. Schizophr Res 141(2–3):109–118. https://doi.org/10.1016/j.schres.2012.08.021. (PMID: 10.1016/j.schres.2012.08.02122981811)
Zhao Z, Cheng Y, Li Z, Yu Y (2018) Altered small-world networks in first-episode schizophrenia patients during cool executive function task. Behav Neurol 2018:e2191208. https://doi.org/10.1155/2018/2191208. (PMID: 10.1155/2018/2191208)
Grant Information:
305258/2019-2 Conselho Nacional de Desenvolvimento Científico e Tecnológico
Contributed Indexing:
Keywords: Brain circuitry; Brain connectivity; EEG; Electroencephalography; Low-gamma; Schizophrenia; VEP; Visually evoked potentials
Entry Date(s):
Date Created: 20221102 Date Completed: 20230113 Latest Revision: 20230113
Update Code:
20240105
DOI:
10.1007/s00221-022-06495-4
PMID:
36322165
Czasopismo naukowe
Schizophrenia (SCZ) can be described as a functional dysconnectivity syndrome that affects brain connectivity and circuitry. However, little is known about how sensory stimulation modulates network parameters in schizophrenia, such as their small-worldness (SW) during visual processing. To address this question, we applied graph theory algorithms to multi-electrode EEG recordings obtained during visual stimulation with a checkerboard pattern-reversal stimulus. Twenty-six volunteers participated in the study, 13 diagnosed with schizophrenia (SCZ; mean age = 38.3 years; SD = 9.61 years) and 13 healthy controls (HC; mean age = 28.92 years; SD = 12.92 years). The visually evoked potential (VEP) showed a global amplitude decrease (p < 0.05) for SCZ patients as opposed to HC but no differences in latency (p > 0.05). As a signature of functional connectivity, graph measures were obtained from the Magnitude-Squared Coherence between signals from pairs of occipital electrodes, separately for the alpha (8-13 Hz) and low-gamma (36-55 Hz) bands. For the alpha band, there was a significant effect of the visual stimulus on all measures (p < 0.05) but no group interaction between SCZ and HZ (p > 0.05). For the low-gamma spectrum, both groups showed a decrease of Characteristic Path Length (L) during visual stimulation (p < 0.05), but, contrary to the HC group, only SCZ significantly lowered their small-world (SW) connectivity index during visual stimulation (SCZ p < 0.05; HC p > 0.05). This indicates dysconnectivity of the functional network in the low-gamma band of SCZ during stimulation, which might indirectly reflect an altered ability to react to new sensory input in patients. These results provide novel evidence about a possible electrophysiological signature of the global deficits revealed by the application of graph theory onto electroencephalography in schizophrenia.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies