Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Immobilization of Lipase in Cu-BTC MOF with Enhanced Catalytic Performance for Resolution of N-hydroxymethyl Vince Lactam.

Tytuł:
Immobilization of Lipase in Cu-BTC MOF with Enhanced Catalytic Performance for Resolution of N-hydroxymethyl Vince Lactam.
Autorzy:
Cheng Q; Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, 130023, People's Republic of China.
Chi X; Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, 130023, People's Republic of China.
Liang Y; National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co., Ltd, Changchun, 130033, People's Republic of China.
Li W; Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, 130023, People's Republic of China.
Sun J; Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, 130023, People's Republic of China.
Tao J; National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co., Ltd, Changchun, 130033, People's Republic of China. .
Wang Z; Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, 130023, People's Republic of China. .
Źródło:
Applied biochemistry and biotechnology [Appl Biochem Biotechnol] 2023 Feb; Vol. 195 (2), pp. 1216-1230. Date of Electronic Publication: 2022 Nov 07.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Clifton, N.J. : Humana Press, c1981-
MeSH Terms:
Lipase*/chemistry
Metal-Organic Frameworks*/chemistry
Catalysis ; Enzymes, Immobilized/chemistry ; Tricarboxylic Acids/chemistry
References:
Ghanem, A., & Aboul-Enein, H. Y. (2005). Application of lipases in kinetic resolution of racemates. Chirality, 17(1), 1–15. https://doi.org/10.1002/chir.20089. (PMID: 10.1002/chir.20089)
Fang, Y., Huang, X. J., Chen, P. C., & Xu, Z. K. (2011). Polymer materials for enzyme immobilization and their application in bioreactors. BMB Reports, 44(2), 87–95. https://doi.org/10.5483/BMBRep.2011.44.2.87. (PMID: 10.5483/BMBRep.2011.44.2.87)
Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis & Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082. (PMID: 10.1002/adsc.200700082)
Mohamad, N. R., Marzuki, N. H., Buang, N. A., Huyop, F., & Wahab, R. A. (2021). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Eauipment, 29(2), 205–220. https://doi.org/10.1080/13102818.2015.1008192. (PMID: 10.1080/13102818.2015.1008192)
Bhushan, I., Parshad, R., Qazi, G. N., Ingavle, G., Rajan, C. R., Ponrathnam, S., & Gupta, V. K. (2008). Lipase enzyme immobilization on synthetic beaded macroporous copolymers for kinetic resolution of chiral drugs intermediates. Process Biochemistry, 43(4), 321–330. https://doi.org/10.1016/j.procbio.2007.11.019. (PMID: 10.1016/j.procbio.2007.11.019)
Xun, E. N., Lv, X. L., Kang, W., Wang, J. X., Zhang, H., Wang, L., & Wang, Z. (2012). Immobilization of Pseudomonas fluorescens lipase onto magnetic nanoparticles for resolution of 2-octanol. Applied Biochemistry and Biotechnology, 168, 697–707. https://doi.org/10.1007/s12010-012-9810-9. (PMID: 10.1007/s12010-012-9810-9)
Coşkun, G., Çıplak, Z., Yıldız, N., & Mehmetoğlu, U. (2021). Immobilization of Candida antarctica lipase on nanomaterials and investigation of the enzyme activity and enantioselectivity. Applied Biochemistry and Biotechnology, 193, 430–445. https://doi.org/10.1007/s12010-020-03443-2. (PMID: 10.1007/s12010-020-03443-2)
Zdarta, J., Meyer, A., Jesionowski, T., & Pinelo, M. (2018). A general overview of support materials for enzyme immobilization: Characteristics, properties practical utility. Catalysts, 8(2), 92. https://doi.org/10.3390/catal8020092. (PMID: 10.3390/catal8020092)
Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., & Zhou, H. C. (2018). Stable metal-organic frameworks: Design, synthesis, and applications. Advanced Materials, 30(37), 1704303. https://doi.org/10.1002/adma.201704303. (PMID: 10.1002/adma.201704303)
Liang, K., Ricco, R., Doherty, C. M., Styles, M. J., Bell, S., Kirby, N., Mudie, S., Haylock, D., Hill, A. J., Doonan, C. J., & Falcaro, P. (2015). Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 6, 7240. https://doi.org/10.1038/ncomms8240. (PMID: 10.1038/ncomms8240)
Salgaonkar, M., Nadar, S. S., & Rathod, V. K. (2019). Biomineralization of orange peel peroxidase within metal organic frameworks (OPP–MOFs) for dye degradation. Journal of Environmental Chemical Engineering, 7(2), 102969. https://doi.org/10.1016/j.jece.2019.102969. (PMID: 10.1016/j.jece.2019.102969)
Wu, X., Yang, C., & Ge, J. (2017). Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresources and Bioprocessing, 4, 24. https://doi.org/10.1186/s40643-017-0154-8. (PMID: 10.1186/s40643-017-0154-8)
Du, Y., Gao, J., Zhou, L., Ma, L., He, Y., Huang, Z., & Jiang, Y. (2017). Enzyme nanocapsules armored by metal-organic frameworks: A novel approach for preparing nanobiocatalyst. Chemical Engineering Journal, 327, 1192–1197. https://doi.org/10.1016/j.cej.2017.07.021. (PMID: 10.1016/j.cej.2017.07.021)
Liang, S., Wu, X. L., Xiong, J., & Zong, M. H. (2019). Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coordination Chemistry Reviews, 406, 213149. https://doi.org/10.1016/j.ccr.2019.213149. (PMID: 10.1016/j.ccr.2019.213149)
Chen, X., Xue, S., Lin, Y., Luo, J., & Kong, L. (2020). Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: A new platform for efficient ligand discovery from natural herbs. Analytica Chimica Acta, 1099, 94–102. https://doi.org/10.1016/j.aca.2019.11.042. (PMID: 10.1016/j.aca.2019.11.042)
Chen, J., Sun, B., Sun, C., Zhang, P., Xu, W., Liu, Y., Xiong, B., & Tang, K. W. (2020). Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Separation and Purification Technology, 251, 117398. https://doi.org/10.1016/j.seppur.2020.117398. (PMID: 10.1016/j.seppur.2020.117398)
Hu, Y., Dai, L., Liu, D., & Du, W. (2018). Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase. Green Chemistry, 20(19), 4500–4506. https://doi.org/10.1039/C8GC01284A. (PMID: 10.1039/C8GC01284A)
Nowroozi-Nejad, Z., Bahramian, B., & Hosseinkhani, S. (2019). A fast and efficient stabilization of firefly luciferase on MIL-53(Al) via surface adsorption mechanism. Research on Chemical Intermediates, 45, 2489–2501. https://doi.org/10.1007/s11164-019-03748-w. (PMID: 10.1007/s11164-019-03748-w)
Xu, W., Jiao, L., Yan, H., Wu, Y., Chen, L., Gu, W., Du, D., Lin, Y., & Zhu, C. (2019). Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Applied Materials & Interfaces, 11(25), 22096–22101. https://doi.org/10.1021/acsami.9b03004. (PMID: 10.1021/acsami.9b03004)
Shih, Y. H., Lo, S.-H., Yang, N. S., Singco, B., Cheng, Y. J., Wu, C. Y., Chang, I. H., Huang, H. Y., & Lin, C. H. (2012). Trypsin-immobilized metal-organic framework as a biocatalyst in proteomics analysis. ChemPlusChem, 77(11), 982–986. https://doi.org/10.1002/cplu.201200186. (PMID: 10.1002/cplu.201200186)
Shams, S., Ahmad, W., Memon, A. H., Wei, Y., Yuan, Q., & Liang, H. (2019). Facile synthesis of laccase mimic Cu/H3BTC MOF for efficient dye degradation and detection of phenolic pollutants. RSC Advances, 9(70), 40845–40854. https://doi.org/10.1039/C9RA07473B. (PMID: 10.1039/C9RA07473B)
Xia, H., Li, Z., Zhong, X., Li, B., Jiang, Y., & Jiang, Y. (2019). HKUST-1 catalyzed efficient in situ regeneration of NAD+ for dehydrogenase mediated oxidation. Chemical Engineering Science, 203, 43–53. https://doi.org/10.1016/j.ces.2019.03.076. (PMID: 10.1016/j.ces.2019.03.076)
Chen, S., Wen, L., Svec, F., Tan, T., & Lv, Y. (2017). Magnetic metal–organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Advances, 7(34), 21205–21213. https://doi.org/10.1039/C7RA02291C. (PMID: 10.1039/C7RA02291C)
Wang, L., Zhi, W., Wan, J., Han, J., Li, C., & Wang, Y. (2019). Recyclable β-glucosidase by one-pot encapsulation with Cu-MOFs for enhanced hydrolysis of cellulose to glucose. ACS Sustainable Chemistry & Engineering, 7(3), 3339–3348. https://doi.org/10.1021/acssuschemeng.8b05489. (PMID: 10.1021/acssuschemeng.8b05489)
Ding, M., & Jiang, H. L. (2020). Improving water stability of MOFs by a general surface hydrophobic polymerization. CCS Chemistry, 3(8), 1–23. https://doi.org/10.31635/ccschem.020.202000515. (PMID: 10.31635/ccschem.020.202000515)
Yuan, B., Yin, X. Q., Liu, X. Q., Li, X. Y., & Sun, L. B. (2016). Enhanced hydrothermal stability and catalytic performance of HKUST-1 by incorporating carboxyl-functionalized attapulgite. ACS Applied Materials & Interfaces, 8(25), 16457–16464. https://doi.org/10.1021/acsami.6b04127. (PMID: 10.1021/acsami.6b04127)
Nobakht, N., Faramarzi, M. A., Shafiee, A., Khoobi, M., & Rafiee, E. (2018). Polyoxometalate-metal organic framework-lipase: An efficient green catalyst for synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. International Journal of Biological Macromolecules, 113, 8–19. https://doi.org/10.1016/j.ijbiomac.2018.02.023. (PMID: 10.1016/j.ijbiomac.2018.02.023)
Cao, Y., Wu, Z., Wang, T., Xiao, Y., Huo, Q., & Liu, Y. (2016). Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: A biocatalyst for esterification. Dalton Transactions, 45(16), 6998–7003. https://doi.org/10.1039/C6DT00677A. (PMID: 10.1039/C6DT00677A)
Vince, R., & Hua, M. (1990). Synthesis and anti-HIV activity of carbocyclic 2’,3’-didehydro-2’,3’-dideoxy 2,6-disubstituted purine nucleosides. Journal of Medicinal Chemistry, 21(22), 17–21. https://doi.org/10.1002/chin.199022287. (PMID: 10.1002/chin.199022287)
Gupta, R. K., Hill, A., Sawyer, A. W., Cozzi-Lepri, A., von Wyl, V., Yerly, S., Lima, V. D., Günthard, H. F., Gilks, C., & Pillay, D. (2009). Virological monitoring and resistance to first-line highly active antiretroviral therapy in adults infected with HIV-1 treated under WHO guidelines: A systematic review and meta-analysis. The Lancet Infectious Diseases, 9(7), 409–417. https://doi.org/10.1016/S1473-3099(09)70136-7. (PMID: 10.1016/S1473-3099(09)70136-7)
Xun, E., Wang, J., Zhang, H., Chen, G., Yue, H., Zhao, J., Wang, L., & Wang, Z. (2013). Resolution of N-hydroxymethyl vince lactam catalyzed by lipase in organic solvent. Journal of Chemical Technology and Biotechnology, 88(5), 904–909. https://doi.org/10.1002/jctb.3919. (PMID: 10.1002/jctb.3919)
Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7. (PMID: 10.1016/0003-2697(85)90442-7)
Chen, C. S., Fujimoto, Y., Girdaukas, G., & Sih, C. J. (1982). Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 104(25), 7294–7299. https://doi.org/10.1021/ja00389a064. (PMID: 10.1021/ja00389a064)
Yang, Y., Dong, H., Wang, Y., He, C., Wang, Y., & Zhang, X. (2018). Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. Journal of Solid State Chemistry, 258, 582–587. https://doi.org/10.1016/j.jssc.2017.11.033. (PMID: 10.1016/j.jssc.2017.11.033)
Feng, Y., Jiang, H., Li, S., Wang, J., Jing, X., Wang, Y., & Chen, M. (2013). Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 87–92. https://doi.org/10.1016/j.colsurfa.2013.04.032. (PMID: 10.1016/j.colsurfa.2013.04.032)
Zhong, Z., Pang, S., Wu, Y. W., Jiang, S., & Ouyang, J. (2017). Synthesis and characterization of mesoporous Cu-MOF for laccase immobilization. Journal of Chemical Technology & Biotechnology, 92(7), 1841–1847. https://doi.org/10.1002/jctb.5189. (PMID: 10.1002/jctb.5189)
Morellon-Sterling, R., Siar, E. H., Braham, S. A., de Andrades, D., Pedroche, J., Millán, M. D., & Fernandez-Lafuente, R. (2021). Effect of amine length in the interference of the multipoint covalent immobilization of enzymes on glyoxyl agarose beads. Journal of Biotechnology, 329, 128–142. https://doi.org/10.1016/j.jbiotec.2021.02.005. (PMID: 10.1016/j.jbiotec.2021.02.005)
Meylan, W. M., & Howard, P. H. (2000). Estimating log P with atom/fragments and water solubility with log P. Perspectives in Drug Discovery and Design, 19, 67–84. https://doi.org/10.1023/A:1008715521862. (PMID: 10.1023/A:1008715521862)
Zaks, A., & Klibanov, A. M. (1988). The effect of water on enzyme action in organic media. Journal of Biological Chemistry, 263(17), 8017–8021. https://doi.org/10.1016/S0021-9258(18)68435-2. (PMID: 10.1016/S0021-9258(18)68435-2)
Wehtje, E., Costes, D., & Adlercreutz, P. (1997). Enantioselectivity of lipases: Effects of water activity. Journal of Molecular Catalysis B: Enzymatic, 3(5), 221–230. https://doi.org/10.1016/S1381-1177(97)00003-9. (PMID: 10.1016/S1381-1177(97)00003-9)
Phillips, R. S. (1996). Temperature modulation of the stereochemistry of enzymatic catalysis: Prospects for exploitation. Trends in Biotechnology, 14(1), 13–16. https://doi.org/10.1016/0167-7799(96)80908-5. (PMID: 10.1016/0167-7799(96)80908-5)
Lin, C., Du, Y., Wang, S., Wang, L., & Song, Y. (2021). Glucose . Materials Science and Engineering: C, 118, 111511. https://doi.org/10.1016/j.msec.2020.111511. (PMID: 10.1016/j.msec.2020.111511)
Zhu, L., Zhu, F. C., Qin, S., Wu, B., & He, B. F. (2016). Highly efficient resolution of N-hydroxymethyl vince lactam by solvent stable lipase YCJ01. Journal of Molecular Catalysis B: Enzymatic, 133, 150–156. https://doi.org/10.1016/j.molcatb.2016.12.009. (PMID: 10.1016/j.molcatb.2016.12.009)
Xue, T. Y., Xu, G. C., Han, R. Z., & Ni, Y. (2015). Soluble expression of (+)-γ-lactamase in Bacillus subtilis for the enantioselective preparation of abacavir precursor. Applied Biochemistry and Biotechnology, 176, 1687–1699. https://doi.org/10.1007/s12010-015-1670-7. (PMID: 10.1007/s12010-015-1670-7)
Li, H. X., Gao, S. H., Qiu, Y., Liang, C. Q., Zhu, S. Z., & Zheng, G. J. (2020). Genome mining integrating semi-rational protein engineering and nanoreactor design: Roadmap for a robust biocatalyst for industrial resolution of Vince lactam. Applied Microbiology and Biotechnology, 104, 1109–1123. https://doi.org/10.1007/s00253-019-10275-6. (PMID: 10.1007/s00253-019-10275-6)
Zhong, X., Xia, H., Huang, W., Li, Z., & Jiang, Y. (2020). Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chemical Engineering Journal, 381, 122758. https://doi.org/10.1016/j.cej.2019.122758. (PMID: 10.1016/j.cej.2019.122758)
Grant Information:
20200301029RQ Science and Technology Innovation Talents in Universities of Henan Province; 2018220002000466 Jilin COFCO Biochemical Co., Ltd.; JJKH20210170KJ the Fund of Scientific Research from the Education Department of Jilin Province
Contributed Indexing:
Keywords: Cu-BTC MOF; Immobilization; Lipase; N-hydroxymethyl vince lactam; Resolution
Substance Nomenclature:
EC 3.1.1.3 (Lipase)
0 (Metal-Organic Frameworks)
0 (Enzymes, Immobilized)
0 (Tricarboxylic Acids)
Entry Date(s):
Date Created: 20221107 Date Completed: 20230123 Latest Revision: 20230123
Update Code:
20230123
DOI:
10.1007/s12010-022-04212-z
PMID:
36342624
Czasopismo naukowe
Metal-organic frameworks (MOFs) can be used as the immobilization carriers to protect the physicochemical properties of enzymes and improve their catalytic performance. Herein, we report an in situ co-precipitation method to immobilize lipase from Candida sp. 99-125 in Cu-BTC MOF (BTC = 1, 3, 5-benzene tricarboxylic acid, H 3 BTC). Characterizations of the immobilized lipase (lipase@Cu-BTC) have confirmed the entrapment of lipase molecules in Cu-BTC MOF. The immobilized lipase has been successfully applied for resolving N-hydroxymethyl vince lactam (N-HMVL) and its catalytic activity is five times that of native enzyme. More importantly, we found that Cu-BTC MOF can afford powerful protection for enzyme in nearly dry organic solvent and endow the immobilized lipase with excellent reusability and storage stability. Our present study may widen the application of immobilized enzyme with MOF as the immobilized carrier.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies