Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Efficient Ternary Mn-Based Spinel Oxide with Multiple Active Sites for Oxygen Evolution Reaction Discovered via High-Throughput Screening Methods.

Tytuł:
Efficient Ternary Mn-Based Spinel Oxide with Multiple Active Sites for Oxygen Evolution Reaction Discovered via High-Throughput Screening Methods.
Autorzy:
Ahmed MG; School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.; Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore.
Tay YF; Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore.
Chi X; Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore, 117603, Singapore.
Zhang M; School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Tan JMR; School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.; Energy Research Institute @NTU IERI@N, Nanyang Technological University, Singapore, 637553, Singapore.; Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore.
Chiam SY; Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore.
Rusydi A; Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore, 117603, Singapore.
Wong LH; School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.; Energy Research Institute @NTU IERI@N, Nanyang Technological University, Singapore, 637553, Singapore.; Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore.
Źródło:
Small (Weinheim an der Bergstrasse, Germany) [Small] 2023 Jan; Vol. 19 (2), pp. e2204520. Date of Electronic Publication: 2022 Nov 10.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH, c2005-
MeSH Terms:
Oxides*
High-Throughput Screening Assays*
Catalytic Domain ; Oxygen
References:
a) Z. Yan, J. L. Hitt, J. A. Turner, T. E. Mallouk, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 12558;.
b) J. A. Turner, Science 2004, 305, 972.
N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.
a) H. Schäfer, D. M. Chevrier, K. Kuepper, P. Zhang, J. Wollschlaeger, D. Daum, M. Steinhart, C. Heß, U. Krupp, K. Müller-Buschbaum, J. Stangl, M. Schmidt, Energy Environ. Sci. 2016, 9, 2609;.
b) J. A. Haber, Y. Cai, S. Jung, C. Xiang, S. Mitrovic, J. Jin, A. T. Bell, J. M. Gregoire, Energy Environ. Sci. 2014, 7, 682.
Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 399.
M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc. 2015, 137, 3638.
D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Nørskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305.
F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M. B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J. F. de Araujo, M. Gliech, D. Teschner, J. Zhu, W.-X. Li, J. Greeley, B. R. Cuenya, P. Strasser, Nat. Commun. 2020, 11, 2522.
a) B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. García de Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, E. H. Sargent, Science 2016, 352, 333;.
b) J. Chen, H. Li, Z. Yu, C. Liu, Z. Yuan, C. Wang, S. Zhao, G. Henkelman, S. Li, L. Wei, Y. Chen, Adv. Energy Mater. 2020, 10, 2002593.
B. Zhang, L. Wang, Z. Cao, S. M. Kozlov, F. P. García de Arquer, C. T. Dinh, J. Li, Z. Wang, X. Zheng, L. Zhang, Y. Wen, O. Voznyy, R. Comin, P. De Luna, T. Regier, W. Bi, E. E. Alp, C.-W. Pao, L. Zheng, Y. Hu, Y. Ji, Y. Li, Y. Zhang, L. Cavallo, H. Peng, E. H. Sargent, Nat. Catal. 2020, 3, 985.
Y. Yang, L. Dang, M. J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R. J. Hamers, S. Jin, Adv. Energy Mater. 2018, 8, 1703189.
J. Jiang, F. Sun, S. Zhou, W. Hu, H. Zhang, J. Dong, Z. Jiang, J. Zhao, J. Li, W. Yan, M. Wang, Nat. Commun. 2018, 9, 2885.
Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 2017, 117, 10121.
a) C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-Horn, Z. J. Xu, Adv. Mater. 2017, 29, 1606800;.
b) Y. Zhou, S. Sun, C. Wei, Y. Sun, P. Xi, Z. Feng, Z. J. Xu, Adv. Mater. 2019, 31, 1902509.
Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu, G. Zhang, S. Y. Pang, W. Lu, C. L. Mak, X. Luo, L. Zhou, M. Wei, H. Huang, J. Am. Chem. Soc. 2019, 141, 8136.
J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.
a) Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen, Y. Du, A. C. Fisher, F. Cheng, X. Wang, H. Zhang, Z. J. Xu, Adv. Mater. 2018, 30, 1802912;.
b) A. Grimaud, K. J. May, C. E. Carlton, Y.-L. Lee, M. Risch, W. T. Hong, J. Zhou, Y. Shao-Horn, Nat. Commun. 2013, 4, 2439.
a) H.-Y. Wang, S.-F. Hung, H.-Y. Chen, T.-S. Chan, H. M. Chen, B. Liu, J. Am. Chem. Soc. 2016, 138, 36;.
b) H.-Y. Wang, Y.-Y. Hsu, R. Chen, T.-S. Chan, H. M. Chen, B. Liu, Adv. Energy Mater. 2015, 5, 1500091.
V. Kocevski, G. Pilania, B. P. Uberuaga, J. Mater. Chem. A 2020, 8, 25756.
a) S.-F. Hung, Y.-Y. Hsu, C.-J. Chang, C.-S. Hsu, N.-T. Suen, T.-S. Chan, H. M. Chen, Adv. Energy Mater. 2018, 8, 1701686;.
b) X.-F. Lu, L.-F. Gu, J.-W. Wang, J.-X. Wu, P.-Q. Liao, G.-R. Li, Adv. Mater. 2017, 29, 1604437;.
c) C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Nat. Commun. 2015, 6, 7345.
T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat. Catal. 2019, 2, 763.
Y. Huang, S. L. Zhang, X. F. Lu, Z.-P. Wu, D. Luan, X. W. Lou, Angew. Chem., Int. Ed. 2021, 60, 11841.
a) P. F. Smith, B. J. Deibert, S. Kaushik, G. Gardner, S. Hwang, H. Wang, J. F. Al-Sharab, E. Garfunkel, L. Fabris, J. Li, G. C. Dismukes, ACS Catal. 2016, 6, 2089;.
b) Q. Kang, L. Vernisse, R. C. Remsing, A. C. Thenuwara, S. L. Shumlas, I. G. McKendry, M. L. Klein, E. Borguet, M. J. Zdilla, D. R. Strongin, J. Am. Chem. Soc. 2017, 139, 1863;.
c) Y. Gorlin, C.-J. Chung, J. D. Benck, D. Nordlund, L. Seitz, T.-C. Weng, D. Sokaras, B. M. Clemens, T. F. Jaramillo, J. Am. Chem. Soc. 2014, 136, 4920.
a) S. Chen, L. Zhang, L. Yan, X. Xiang, X. Zhao, S. Yang, B. Xu, Adv. Funct. Mater. 2019, 29, 1905487;.
b) J. L. Hitt, Y. C. Li, S. Tao, Z. Yan, Y. Gao, S. J. L. Billinge, T. E. Mallouk, Nat. Commun. 2021, 12, 1114.
a) J. B. Gerken, J. Y. C. Chen, R. C. Massé, A. B. Powell, S. S. Stahl, Angew. Chem., Int. Ed. 2012, 51, 6676;.
b) L. Zhou, Q. Yan, A. Shinde, D. Guevarra, P. F. Newhouse, N. Becerra-Stasiewicz, S. M. Chatman, J. A. Haber, J. B. Neaton, J. M. Gregoire, Adv. Energy Mater. 2015, 5, 1500968;.
c) T. H. Nguyen, M. Zhang, W. Septina, M. G. Ahmed, Y. F. Tay, F. F. Abdi, L. H. Wong, Sol. RRL 2020, 4, 2000437.
J. Y. C. Chen, J. T. Miller, J. B. Gerken, S. S. Stahl, Energy Environ. Sci. 2014, 7, 1382.
C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977.
R. D. Shannon, Acta Crystallogr., Sect. A: Found. Adv. 1976, 32, 751.
a) N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337;.
b) T. Shinagawa, A. T. Garcia-Esparza, K. Takanabe, Sci. Rep. 2015, 5, 13801.
S. Sun, Y. Sun, Y. Zhou, J. Shen, D. Mandler, R. Neumann, Z. J. Xu, Chem. Mater. 2019, 31, 8106.
a) J. Timoshenko, B. R. Cuenya, Chem. Rev. 2021, 121, 882;.
b) S. Zuo, Z.-P. Wu, H. Zhang, X. W. Lou, Adv. Energy Mater. 2022, 12, 2103383.
P. Abbamonte, L. Venema, A. Rusydi, G. A. Sawatzky, G. Logvenov, I. Bozovic, Science 2002, 297, 581.
a) A. N. Vasiliev, O. S. Volkova, L. S. Lobanovskii, I. O. Troyanchuk, Z. Hu, L. H. Tjeng, D. I. Khomskii, H. J. Lin, C. T. Chen, N. Tristan, F. Kretzschmar, R. Klingeler, B. Büchner, Phys. Rev. B 2008, 77, 104442;.
b) V. V. Mesilov, V. R. Galakhov, A. F. Gubkin, E. A. Sherstobitova, G. S. Zakharova, M. A. Uimin, A. Y. Yermakov, K. O. Kvashnina, D. A. Smirnov, J. Phys. Chem. C 2017, 121, 24235.
Z. Hu, H. Wu, M. W. Haverkort, H. H. Hsieh, H. J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C. T. Chen, L. H. Tjeng, Phys. Rev. Lett. 2004, 92, 207402.
X. Gao, J. Liu, Y. Sun, X. Wang, Z. Geng, F. Shi, X. Wang, W. Zhang, S. Feng, Y. Wang, K. Huang, Inorg. Chem. Front. 2019, 6, 3295.
J. Suntivich, W. T. Hong, Y.-L. Lee, J. M. Rondinelli, W. Yang, J. B. Goodenough, B. Dabrowski, J. W. Freeland, Y. Shao-Horn, J. Phys. Chem. C 2014, 118, 1856.
W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey, D. A. Fischer, J. Am. Chem. Soc. 2005, 127, 17479.
K. Li, D. Xue, J. Phys. Chem. A 2006, 110, 11332.
J. Singh, C. Lamberti, J. A. van Bokhoven, Chem. Soc. Rev. 2010, 39, 4754.
Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Chem 2017, 3, 812.
M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717.
D. Cabrera-German, G. Gomez-Sosa, A. Herrera-Gomez, Surf. Interface Anal. 2016, 48, 252.
a) S. Narayanan, J. S. Gibson, J. Aspinall, R. S. Weatherup, M. Pasta, Curr. Opin. Solid State Mater. Sci. 2022, 26, 100978;.
b) S. J. Rezvani, R. Gunnella, A. Witkowska, F. Mueller, M. Pasqualini, F. Nobili, S. Passerini, A. D. Cicco, ACS Appl. Mater. Interfaces 2017, 9, 4570.
Z. Liu, Z. Xiao, G. Luo, R. Chen, C.-L. Dong, X. Chen, J. Cen, H. Yang, Y. Wang, D. Su, Y. Li, S. Wang, Small 2019, 15, 1904903.
M.-H. Phan, T.-L. Phan, T.-N. Huynh, S.-C. Yu, J. R. Rhee, N. V. Khiem, N. X. Phuc, J. Appl. Phys. 2004, 95, 7531.
A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech, J. F. de Araújo, T. Reier, H. Dau, P. Strasser, Nat. Commun. 2015, 6, 8625.
K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y.-L. Lee, A. Grimaud, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 3264.
a) A. Vojvodic, J. K. Nørskov, Science 2011, 334, 1355;.
b) J. Kim, X. Yin, K.-C. Tsao, S. Fang, H. Yang, J. Am. Chem. Soc. 2014, 136, 14646.
P. W. Menezes, C. Walter, B. Chakraborty, J. N. Hausmann, I. Zaharieva, A. Frick, E. von Hauff, H. Dau, M. Driess, Adv. Mater. 2021, 33, 2004098.
Contributed Indexing:
Keywords: FeCoMnO; Mn-based oxides; high-throughput methods; oxygen evolution reactions; spinel oxides; water oxidation
Substance Nomenclature:
0 (Oxides)
0 (spinell)
S88TT14065 (Oxygen)
Entry Date(s):
Date Created: 20221110 Date Completed: 20230113 Latest Revision: 20230127
Update Code:
20240104
DOI:
10.1002/smll.202204520
PMID:
36354178
Czasopismo naukowe
The discovery of more efficient and stable catalysts for oxygen evolution reaction (OER) is vital in improving the efficiency of renewable energy generation devices. Given the large numbers of possible binary and ternary metal oxide OER catalysts, high-throughput methods are necessary to accelerate the rate of discovery. Herein, Mn-based spinel oxide, Fe 10 Co 40 Mn 50 O, is identified for the first time using high-throughput methods demonstrating remarkable catalytic activity (overpotential of 310 mV on fluorine-doped tin oxide (FTO) substrate and 237 mV on Ni foam at 10 mA cm -2 ). Using a combination of soft X-ray absorption spectroscopy and electrochemical measurements, the high catalytic activity is attributed to 1) the formation of multiple active sites in different geometric sites, tetrahedral and octahedral sites; and 2) the formation of active oxyhydroxide phase due to the strong interaction of Co 2+ and Fe 3+ . Structural and surface characterizations after OER show preservation of Fe 10 Co 40 Mn 50 O surface structure highlighting its durability against irreversible redox damage on the catalytic surface. This work demonstrates the use of a high-throughput approach for the rapid identification of a new catalyst, provides a deeper understanding of catalyst design, and addresses the urgent need for a better and stable catalyst to target greener fuel.
(© 2022 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies