Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Colon-Targeted Layer-by-Layer Self-assembled Film: Pharmacokinetic Analysis of BCS Class I and Class III Model Drugs.

Tytuł:
Colon-Targeted Layer-by-Layer Self-assembled Film: Pharmacokinetic Analysis of BCS Class I and Class III Model Drugs.
Autorzy:
Janardhanam LSL; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana State, India.
Deokar AS; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana State, India.
Bollareddy SR; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana State, India.
Venuganti VVK; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana State, India. .
Źródło:
AAPS PharmSciTech [AAPS PharmSciTech] 2022 Nov 15; Vol. 23 (8), pp. 299. Date of Electronic Publication: 2022 Nov 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York : Springer
Original Publication: Arlington, VA : American Association of Pharmaceutical Scientists, c2000-
MeSH Terms:
Fluorouracil*
Colon*
Rats ; Animals ; Pharmaceutical Preparations ; Administration, Oral ; Polyelectrolytes
References:
Bhutani U, Basu T, Majumdar S. Oral drug delivery: conventional to long acting New-Age designs. Eur J Pharm Biopharm [Internet]. 2021;162:23–42. Available from. https://www.sciencedirect.com/science/article/pii/S0939641121000527 . Accessed 18 Mar 2022.
Lamson NG, Berger A, Fein KC, Whitehead KA. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat Biomed Eng [Internet]. 2020;4(1):84–96. https://doi.org/10.1038/s41551-019-0465-5 . (PMID: 10.1038/s41551-019-0465-531686002)
Ryu JH, Choi JS, Park E, Eom MR, Jo S, Lee MS, et al. Chitosan oral patches inspired by mussel adhesion. J Control Release [Internet]. 2020;317:57–66. Available from: https://www.sciencedirect.com/science/article/pii/S0168365919306261 . Accessed 06 Jan 2022.
He S, Radeke C, Jacobsen J, Lind JU, Mu H. Multi-material 3D printing of programmable and stretchable oromucosal patches for delivery of saquinavir. Int J Pharm [Internet]. 2021;610:121236. Available from: https://www.sciencedirect.com/science/article/pii/S0378517321010425 . Accessed 15 Mar 2022.
Sorasitthiyanukarn FN, Muangnoi C, Rojsitthisak P, Rojsitthisak P. Chitosan-alginate nanoparticles as effective oral carriers to improve the stability, bioavailability, and cytotoxicity of curcumin diethyl disuccinate. Carbohydr Polym [Internet]. 2021;256:117426. Available from: https://www.sciencedirect.com/science/article/pii/S014486172031599X . Accessed 16 Mar 2022.
Li T, Geng T, Md A, Banerjee P, Wang B. Novel scheme for rapid synthesis of hollow mesoporous silica nanoparticles (HMSNs) and their application as an efficient delivery carrier for oral bioavailability improvement of poorly water-soluble BCS type II drugs. Colloids Surfaces B Biointerfaces [Internet]. 2019;176:185–93. Available from: https://www.sciencedirect.com/science/article/pii/S0927776519300049 . Accessed 16 Mar 2022.
Ling JTS, Roberts CJ, Billa N. Antifungal and mucoadhesive properties of an orally administered chitosan-coated amphotericin B nanostructured lipid carrier (NLC). AAPS PharmSciTech [Internet]. 2019;20(3):136. https://doi.org/10.1208/s12249-019-1346-7 . (PMID: 10.1208/s12249-019-1346-730838459)
Saraf S, Jain S, Sahoo RN, Mallick S. Lipopolysaccharide derived alginate coated Hepatitis B antigen loaded chitosan nanoparticles for oral mucosal immunization. Int J Biol Macromol [Internet]. 2020;154:466–76. Available from: https://www.sciencedirect.com/science/article/pii/S0141813019402468 . Accessed 16 Mar 2022.
Tong T, Qi Y, Bussiere LD, Wannemuehler M, Miller CL, Wang Q, et al. Transport of artificial virus-like nanocarriers through intestinal monolayers: via microfold cells. Nanoscale. 2020;12(30):16339–47. (PMID: 10.1039/D0NR03680C32725029)
Zhang P, Xu Y, Zhu X, Huang Y. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int J Pharm [Internet]. 2015;496(2):993–1005. Available from: https://www.sciencedirect.com/science/article/pii/S037851731530346X . Accessed 16 Mar 2022.
Wang T, Xue J, Hu Q, Zhou M, Luo Y. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications. J Colloid Interface Sci [Internet]. 2017;507:119–30. Available from: https://www.sciencedirect.com/science/article/pii/S0021979717308573 . Accessed 16 Mar 2022.
Banerjee A, Mitragotri S. Intestinal patch systems for oral drug delivery. Curr Opin Pharmacol. 2017;36:58–65. (PMID: 10.1016/j.coph.2017.08.00528850875)
Janardhanam LSL, Bandi SP, Venuganti VVK. Functionalized LbL film for localized delivery of STAT3 siRNA and oxaliplatin combination to treat colon cancer. ACS Appl Mater Interfaces. 2022;14(8):10030–46. (PMID: 10.1021/acsami.1c2216635170934)
Bandi SP, Venuganti VVK. Functionalized polymeric patch for localized oxaliplatin delivery to treat gastric cancer. Mater Sci Eng C [Internet]. 2021;128:112302. Available from: https://www.sciencedirect.com/science/article/pii/S0928493121004410 . Accessed 18 Jan 2022.
Anandhakumar S, Gokul P, Raichur AM. Stimuli-responsive weak polyelectrolyte multilayer films: a thin film platform for self triggered multi-drug delivery. Mater Sci Eng C [Internet]. 2016;58:622–8. Available from: https://www.sciencedirect.com/science/article/pii/S0928493115302964 . Accessed 20 June 2021.
Xu L, Wang H, Chu Z, Cai L, Shi H, Zhu C, et al. Temperature-responsive multilayer films of micelle-based composites for controlled release of a third-generation EGFR inhibitor. ACS Appl Polym Mater [Internet]. 2020;2:741–50. https://doi.org/10.1021/acsapm.9b01051 . (PMID: 10.1021/acsapm.9b01051)
Tao SL, Desai TA. Gastrointestinal patch systems for oral drug delivery. Drug Discov Today [Internet]. 2005;10(13):909–15. Available from: https://www.sciencedirect.com/science/article/pii/S1359644605034896 . Accessed 11 Mar 2022.
Banerjee A, Mitragotri S. Intestinal patch systems for oral drug delivery. Curr Opin Pharmacol [Internet]. 2017;36:58–65. Available from: https://www.sciencedirect.com/science/article/pii/S1471489217301194 . Accessed 16 Mar 2022.
Barrantes A, Santos O, Sotres J, Arnebrant T. Influence of pH on the build-up of poly-L-lysine/heparin multilayers. J Colloid Interface Sci [Internet]. 2012;388(1):191–200. Available from: https://www.sciencedirect.com/science/article/pii/S0021979712009009 . Accessed 31 Aug 2021.
Soltwedel O, Nestler P, Neumann H-G, Paßvogel M, Kö R, Helm CA. Influence of polycation (PDADMAC) weight on vertical diffusion within polyelectrolyte multilayers during film formation and postpreparation treatment. Macromolecules [Internet]. 2012;45:8995–9004. Available from: https://pubs.acs.org/sharingguidelines . Accessed 29 Aug 2021.
Dodoo S, Steitz R, Laschewsky A, Von Klitzing R. Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers. Phys Chem Chem Phys [Internet]. 2011;13:10318–25. Available from: http://www.rsc.org/pccp . Accessed 28 Aug 2021.
Jang Y, Seo J, Akgun B, Satija S, Char K. Molecular weight dependence on the disintegration of spin-assisted weak polyelectrolyte multilayer films. Macromolecules [Internet]. 2013;46:4580–8. Available from: https://pubs.acs.org/sharingguidelines . Accessed 29 Aug 2021.
Wei L, Wu S, Shi W, Aldrich AL, Kielian T, Carlson MA, et al. Large-scale and rapid preparation of nanofibrous meshes and their application for drug-loaded multilayer mucoadhesive patch fabrication for mouth ulcer treatment. ACS Appl Mater Interfaces [Internet]. 2019;11(32):28740–28751. Available from: www.acsami.org . Accessed 17 Mar 2022.
Tsai W, Tsai H, Wong Y, Hong J, Chang S, Lee M. Preparation and characterization of gellan gum/glucosamine/clioquinol film as oral cancer treatment patch. Mater Sci Eng C [Internet]. 2018;82:317–22. Available from: https://www.sciencedirect.com/science/article/pii/S0928493116314151 . Accessed 17 Mar 2022.
Malet-Martino M, Martino R. Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review. Oncologist [Internet]. 2002;7(4):288–323. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12185293 . Accessed 23 Feb 2019.
Dai X-L, Li S, Chen J-M, Lu T-B. Improving the membrane permeability of 5-fluorouracil via cocrystallization. Cryst Growth Des [Internet]. 2016;16(8):4430–8. Available from: https://pubs.acs.org/sharingguidelines . Accessed 17 Mar 2022.
Meta-analysis Group In Cancer, Piedbois P, Rougier P, Buyse M, Pignon J, Ryan L, et al. Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. J Clin Oncol [Internet]. 1998;16(1):301–8. https://doi.org/10.1200/JCO.1998.16.1.301 . (PMID: 10.1200/JCO.1998.16.1.301)
Burr A, Lars T, Christin M, Per A. Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers. Int J Pharm. 2013;454(2):597–8.
Keating GM, Scott LJ. Moxifloxacin, a review of its use in the management of bacterial infections. Drugs [Internet]. 2004;64(20):2347–77. https://doi.org/10.2165/00003495-200464200-00006 . (PMID: 10.2165/00003495-200464200-0000615456331)
Al Omari MMH, Jaafari DS, Al-Sou’od KA, Badwan AA. Moxifloxacin hydrochloride. In: Brittain H (ed.), Profiles of Drug Substances, Excipients and Related Methodology. Profiles of drug substances, excipients and related methodology HGBT-P of DS, editor [Internet]. Academic Press; 2014. p. 299–431. Available from: https://www.sciencedirect.com/science/article/pii/B9780128001738000076 . Accessed 18 Mar 2022.
Malangoni MA, Song J, Herrington J, Choudhri S, Pertel P. Randomized controlled trial of moxifloxacin compared with piperacillin-tazobactam and amoxicillin-clavulanate for the treatment of complicated intra-abdominal infections. Ann Surg [Internet]. 2006;244(2):204–11. Available from: https://pubmed.ncbi.nlm.nih.gov/16858182 . Accessed 18 Mar 2022.
Weiss G, Reimnitz P, Hampel B, Muehlhofer E, Lippert H. Moxifloxacin for the treatment of patients with complicated intra-abdominal infections (the AIDA Study). J Chemother [Internet]. 2009;21(2):170–80. https://doi.org/10.1179/joc.2009.21.2.170 . (PMID: 10.1179/joc.2009.21.2.17019423470)
Berrington AW, Koerner RJ, Perry JD, Bain HH, Gould FK. Treatment of Staphylococcus aureus endocarditis using moxifloxacin. Int J Med Microbiol [Internet]. 2001;291(3):237–9. Available from: https://www.sciencedirect.com/science/article/pii/S1438422104700296 . Accessed 18 Mar 2022.
Stigliani M, Haghi M, Russo P, Young PM, Traini D. Antibiotic transport across bronchial epithelial cells: effects of molecular weight, LogP and apparent permeability. Eur J Pharm Sci [Internet]. 2016;83:45–51. Available from: https://www.sciencedirect.com/science/article/pii/S0928098715300841 . Accessed 18 Mar 2022.
Langlois M-H, Montagut M, Dubost J-P, Grellet J, Saux M-C. Protonation equilibrium and lipophilicity of moxifloxacin. J Pharm Biomed Anal [Internet]. 2005;37(2):389–93. Available from: https://www.sciencedirect.com/science/article/pii/S0731708504005448 . Accessed 18 Mar 2022.
Singh BN, Singh RB, Singh J. Effects of ionization and penetration enhancers on the transdermal delivery of 5-fluorouracil through excised human stratum corneum. Int J Pharm [Internet]. 2005;298(1):98–107. Available from: https://www.sciencedirect.com/science/article/pii/S0378517305002279 . Accessed 18 Mar 2022.
Janardhanam LSL, Indukuri VV, Verma P, Dusane AC, Venuganti VVK. Functionalized layer-by-layer assembled film with directional 5-fluorouracil release to target colon cancer. Mater Sci Eng C. 2020;115:111118. (PMID: 10.1016/j.msec.2020.111118)
Gade SK, Nirmal J, Garg P, Venuganti VVK. Corneal delivery of moxifloxacin and dexamethasone combination using drug-eluting mucoadhesive contact lens to treat ocular infections. Int J Pharm. 2020;591:120023. (PMID: 10.1016/j.ijpharm.2020.12002333127488)
Rai G, Yadav AK, Jain NK, Agrawal P, Agrawal GP. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon. Drug Deliv [Internet]. 2016;23(1):328–37. Available from:  https://www.tandfonline.com/action/journalInformation?journalCode=idrd20 . Accessed 07 Oct 2022.
Mandapalli PK, Labala S, Bojja J, Venuganti VVK. Effect of pirfenidone delivered using layer-by-layer thin film on excisional wound healing. Eur J Pharm Sci [Internet]. 2016;83:166–74. https://doi.org/10.1016/j.ejps.2015.12.027 . (PMID: 10.1016/j.ejps.2015.12.02726723907)
Marques MRC, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011;18(3):15–28. (PMID: 10.14227/DT180311P15)
Rangnekar B, Momin MAM, Eedara BB, Sinha S, Das SC. Bedaquiline containing triple combination powder for inhalation to treat drug-resistant tuberculosis. Int J Pharm Internet. 2019;570:118689. https://doi.org/10.1016/j.ijpharm.2019.118689 . (PMID: 10.1016/j.ijpharm.2019.118689)
Al Omari MMH, Jaafari DS, Al-Sou’od KA, Badwan AA. Chapter 7: Moxifloxacin Hydrochloride. Profiles Drug Subst Excipients Relat Methodol. 2014. pp. 299–431.
Rabiei M, Palevicius A, Dashti A, Nasiri S, Monshi A, Vilkauskas A, et al. Measurement modulus of elasticity related to the atomic density of planes in unit cell of crystal lattices. Materials (Basel). 2020;13(19):1–17. (PMID: 10.3390/ma13194380)
Pawar PK, Katara R, Majumdar D. Design and evaluation of moxifloxacin hydrochloride ocular inserts. Acta Pharm. 2012;62(1):93–104. (PMID: 10.2478/v10007-012-0002-522472452)
He M, Zhu L, Yang N, Li H, Yang Q. Recent advances of oral film as platform for drug delivery. Int J Pharm. 2021;604:120759. (PMID: 10.1016/j.ijpharm.2021.12075934098053)
Peng K, Shi Y, LaBarbiera A, Mitragotri S. Mucoadhesive ionic liquid gel patches for oral delivery. ACS Biomater Sci Eng. 2020;10:e2373.
Davidovich-Pinhas M, Bianco-Peled H. A quantitative analysis of alginate swelling. Carbohydr Polym. 2010;79(4):1020–7. (PMID: 10.1016/j.carbpol.2009.10.036)
Liu S, Yu Y, Jiang S, Li J, Wang S, Chen S, et al. Biocompatible gradient chitosan fibers with controllable swelling and antibacterial properties. Fibers Polym. 2022;23(1):1–9. (PMID: 10.1007/s12221-021-3276-8)
Phuong Ta L, Bujna E, Kun S, Charalampopoulos D, Khutoryanskiy VV. Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. Int J Pharm. 2021;15(597):120342. (PMID: 10.1016/j.ijpharm.2021.120342)
Mandapalli PK, Labala S, Vanamala D, Koranglekar MP, Sakimalla LA, Venuganti VVK. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules. Drug Deliv. 2014;21(8):605–14. (PMID: 10.3109/10717544.2013.86738124328418)
Sun H, Choi D, Heo J, Jung SY, Hong J. Studies on the drug loading and release profiles of degradable chitosan-based multilayer films for anticancer treatment. Cancers (Basel). 2020;12:593. (PMID: 10.3390/cancers12030593321508857140006)
Guzmán E, Rubio RG, Ortega F. A closer physico-chemical look to the layer-by-layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci. 2020;1(282):102197. (PMID: 10.1016/j.cis.2020.102197)
Singh BN, Singh RB, Singh J. Effects of ionization and penetration enhancers on the transdermal delivery of 5-fluorouracil through excised human stratum corneum. Int J Pharm. 2005;298(1):98–107. (PMID: 10.1016/j.ijpharm.2005.04.00415913928)
Ahmad I, Bano R, Ghulam Musharraf S, Ahmed S, Ali Sheraz M, UlArfeen Q, et al. Photodegradation of moxifloxacin in aqueous and organic solvents: a kinetic study. AAPS PharmSciTech. 2014;15(6):1588–97. (PMID: 10.1208/s12249-014-0184-x251397644245426)
Sogias IA, Williams AC, Khutoryanskiy VV. why chitosan is mucoadhesive? Biomacromol. 2008;9:1837–42. (PMID: 10.1021/bm800276d)
He W, Du Q, Cao DY, Xiang B, Fan LF. Study on colon-specific pectin/ethylcellulose film-coated 5-fluorouracil pellets in rats. Int J Pharm. 2008;348(1–2):35–45. (PMID: 10.1016/j.ijpharm.2007.07.00517697758)
Krishnaiah YSR, Satyanarayana V, Kumar BD, Karthikeyan RS, Bhaskar P. In vivo pharmacokinetics in human volunteers: oral administered guar gum-based colon-targeted 5-fluorouracil tablets. Eur J Pharm Sci. 2003;19(5):355–62. (PMID: 10.1016/S0928-0987(03)00139-812907286)
Dev RK, Bali V, Pathak K. Novel microbially triggered colon specific delivery system of 5-fluorouracil: statistical optimization, in vitro, In vivo, cytotoxic and stability assessment. Int J Pharm. 2011;411(1–2):142–51. (PMID: 10.1016/j.ijpharm.2011.03.05721463667)
Wei H, Qing D, De-Ying C, Bai X, Li-Fang F. Study on colon-specific pectin/ethylcellulose film-coated 5-fluorouracil pellets in rats. Int J Pharm. 2008;348:35–45. (PMID: 10.1016/j.ijpharm.2007.07.005)
More LA, Lane S, Asnani A. 5-FU cardiotoxicity: vasospasm, myocarditis, and sudden death. Curr Cardiol Rep [Internet]. 2021;23(3):1–17. https://doi.org/10.1007/s11886-021-01441-2 . (PMID: 10.1007/s11886-021-01441-2)
Contributed Indexing:
Keywords: 5-fluorouracil; colon delivery; layer-by-layer assembled film; moxifloxacin HCl; pharmacokinetics
Substance Nomenclature:
0 (Pharmaceutical Preparations)
U3P01618RT (Fluorouracil)
0 (Polyelectrolytes)
Entry Date(s):
Date Created: 20221115 Date Completed: 20221118 Latest Revision: 20221128
Update Code:
20231215
DOI:
10.1208/s12249-022-02450-2
PMID:
36380249
Czasopismo naukowe
The aim of the study was to investigate the pharmacokinetic parameters of 5-fluorouracil (5FU) and moxifloxacin HCl (MF) after oral administration using layer-by-layer assembled film in enteric-coated capsule. The layer-by-layer (LbL) film was prepared by sequential layering of chitosan and sodium alginate polyelectrolytes containing either 5FU or MF. The films were in vitro evaluated for physical characteristics, drug loading and release behaviour. In vivo pharmacokinetic evaluation was performed in the rat model for three different drug concentrations after oral administration and compared with intravenous administration. The results showed that the thickness of 10-bilayer film was 147 ± 11.66 µm and 212.3 ± 7.19 µm after 5FU and MF loading, respectively. The LbL film with backing layer provided directional release of 5FU and MF, where 63.81 ± 4.52% and 101.38 ± 5.08%, respectively, was released in 24 h. 5FU showed non-linear pharmacokinetics compared with linear pharmacokinetics shown by MF after oral administration. There is a dose-dependent increase in C max after oral administration of 5FU and MF LbL film. The T max was found to be 720 min and 840 min for 5FU and MF after oral administration. The mean residence time and AUC 0-24 at 45 mg/kg were 871.4 ± 6.45 min and 198.6 ± 5.03 × 10 3  min per ng/mL and 1267 ± 142.4 min and 1590 ± 55.60 10 3  min per ng/mL for 5FU and MF, respectively. Taken together, colon-targeted LbL film can be developed for oral administration of drugs for local and systemic applications.
(© 2022. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies