Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Quantifying the Generality of Strength Adaptation: A Meta-Analysis.

Tytuł:
Quantifying the Generality of Strength Adaptation: A Meta-Analysis.
Autorzy:
Spitz RW; Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
Kataoka R; Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
Dankel SJ; Exercise Physiology Laboratory, Department of Health and Exercise Science, Rowan University, Glassboro, NJ, USA.
Bell ZW; Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
Song JS; Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
Wong V; Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
Yamada Y; Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
Loenneke JP; Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA. .
Źródło:
Sports medicine (Auckland, N.Z.) [Sports Med] 2023 Mar; Vol. 53 (3), pp. 637-648. Date of Electronic Publication: 2022 Nov 18.
Typ publikacji:
Meta-Analysis; Systematic Review
Język:
English
Imprint Name(s):
Publication: Auckland : Adis, Springer International
Original Publication: [Auckland, N.Z. ; Newtown, PA] : ADIS,
MeSH Terms:
Hand Strength*
Resistance Training*/methods
Humans ; Adult ; Middle Aged ; Muscle, Skeletal/physiology ; Muscle Strength/physiology ; Adaptation, Physiological/physiology ; Acclimatization
References:
Aagaard P, Simonsen EB, Trolle M, Bangsbo J, Klausen K. Specificity of training velocity and training load on gains in isokinetic knee joint strength. Acta Physiol Scand. 1996;156(2):123–9. https://doi.org/10.1046/j.1365-201X.1996.438162000.x . (PMID: 10.1046/j.1365-201X.1996.438162000.x8868268)
Buckner SL, Jessee MB, Mattocks KT, Mouser JG, Counts BR, Dankel SJ, et al. Determining strength: a case for multiple methods of measurement. Sports Med. 2017;47(2):193–5. https://doi.org/10.1007/s40279-016-0580-3 . (PMID: 10.1007/s40279-016-0580-327380100)
Higbie EJ, Cureton KJ, Warren GL, Prior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996;81(5):2173–81. https://doi.org/10.1152/jappl.1996.81.5.2173 . (PMID: 10.1152/jappl.1996.81.5.21738941543)
Ogasawara R, Loenneke JP, Thiebaud RS, Abe T. Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med. 2013;4(02):114. https://doi.org/10.4236/ijcm.2013.42022 . (PMID: 10.4236/ijcm.2013.42022)
Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012. https://doi.org/10.1152/japplphysiol.00307.2012 . (PMID: 10.1152/japplphysiol.00307.2012229612713472488)
Spitz RW, Bell ZW, Wong V, Yamada Y, Song JS, Buckner SL, et al. Strength testing or strength training: considerations for future research. Physiol Meas. 2020;41(9):091. https://doi.org/10.1088/1361-6579/abb1fa . (PMID: 10.1088/1361-6579/abb1fa)
Dankel SJ, Bell ZW, Spitz RW, Wong V, Viana RB, Chatakondi RN, et al. Assessing differential responders and mean changes in muscle size, strength, and the crossover effect to 2 distinct resistance training protocols. Appl Physiol Nutr Metab. 2020;45(5):463–70. https://doi.org/10.1139/apnm-2019-0470 . (PMID: 10.1139/apnm-2019-047031553889)
Bezerra ES, Moro ARP, Orssatto L, da Silva ME, Willardson JM, Simao R. Muscular performance and body composition changes following multi-joint versus combined multi- and single-joint exercises in aging adults. Appl Physiol Nutr Metab. 2018;43(6):602–8. https://doi.org/10.1139/apnm-2017-0655 . (PMID: 10.1139/apnm-2017-065529351383)
Cook SB, Scott BR, Hayes KL, Murphy BG. Neuromuscular adaptations to low-load blood flow restricted resistance training. J Sports Sci Med. 2018;17(1):66–73. (PMID: 295355795844210)
Cadore EL, Casas-Herrero A, Zambom-Ferraresi F, Idoate F, Millor N, Gomez M, et al. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age (Dordr). 2014;36(2):773–85. https://doi.org/10.1007/s11357-013-9586-z . (PMID: 10.1007/s11357-013-9586-z24030238)
Centner C, Lauber B, Seynnes OR, Jerger S, Sohnius T, Gollhofer A, et al. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training. J Appl Physiol. 2019;127(6):1660–7. https://doi.org/10.1152/japplphysiol.00602.2019 . (PMID: 10.1152/japplphysiol.00602.201931725362)
Shoepe TC, Ramirez DA, Rovetti RJ, Kohler DR, Almstedt HC. The effects of 24 weeks of resistance training with simultaneous elastic and free weight loading on muscular performance of novice lifters. J Hum Kinet. 2011;29:93–106. https://doi.org/10.2478/v10078-011-0043-8 . (PMID: 10.2478/v10078-011-0043-8234862573588619)
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;29(372): n71. https://doi.org/10.1136/bmj.n71 . (PMID: 10.1136/bmj.n71)
Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;28(366): l4898. https://doi.org/10.1136/bmj.l4898 . (PMID: 10.1136/bmj.l4898)
Sale D, Martin J, Moroz D. Hypertrophy without increased isometric strength after weight training. Eur J Appl Physiol. 1992;64(1):51–5. https://doi.org/10.1007/BF00376440 . (PMID: 10.1007/BF00376440)
Schulze K, Gallagher P, Trappe S. Resistance training preserves skeletal muscle function during unloading in humans. Med Sci Sports Exerc. 2002;34(2):303–13. https://doi.org/10.1097/00005768-200202000-00019 . (PMID: 10.1097/00005768-200202000-0001911828241)
Beyer KS, Fukuda DH, Boone CH, Wells AJ, Townsend JR, Jajtner AR, et al. Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J Strength Cond Res. 2016;30(5):1213–23. https://doi.org/10.1519/JSC.0000000000001219 . (PMID: 10.1519/JSC.000000000000121926466136)
Dankel SJ, Loenneke JP. Effect sizes for paired data should use the change score variability rather than the pre-test variability. J Strength Cond Res. 2021;35(6):1773–8. https://doi.org/10.1519/JSC.0000000000002946 . (PMID: 10.1519/JSC.000000000000294630358698)
Abe T, DeHoyos DV, Pollock ML, Garzarella L. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol. 2000;81(3):174–80. https://doi.org/10.1007/s004210050027 . (PMID: 10.1007/s00421005002710638374)
Johnsen E, van den Tillaar R. Effects of training frequency on muscular strength for trained men under volume matched conditions. PeerJ. 2021;9: e10781. https://doi.org/10.7717/peerj.10781 . (PMID: 10.7717/peerj.10781336437067897409)
Arazi H, Asadi A, Gentil P, Ramirez-Campillo R, Jahangiri P, Ghorbani A, et al. Effects of different resistance training frequencies on body composition and muscular performance adaptations in men. PeerJ. 2021;9: e10537. https://doi.org/10.7717/peerj.10537 . (PMID: 10.7717/peerj.10537339769528067909)
Chaves TS, de Campos P, Biazon TM, Santos MED. Effects of resistance training with controlled versus self-selected repetition duration on muscle mass and strength in untrained men. PeerJ. 2020;8:8697. https://doi.org/10.7717/peerj.8697 . (PMID: 10.7717/peerj.8697)
Mattocks KT, Buckner SL, Jessee MB, Dankel SJ, Mouser JG, Loenneke JP. Practicing the test produces strength equivalent to higher volume training. Med Sci Sports Exerc. 2017;49(9):1945–54. https://doi.org/10.1249/MSS.0000000000001300 . (PMID: 10.1249/MSS.000000000000130028463902)
Counts BR, Buckner SL, Dankel SJ, Jessee MB, Mattocks KT, Mouser JG, et al. The acute and chronic effects of “NO LOAD” resistance training. Physiol Behav. 2016;164(Pt A):345–52. https://doi.org/10.1016/j.physbeh.2016.06.024 . (PMID: 10.1016/j.physbeh.2016.06.02427329807)
Borenstein M. Introduction to meta-analysis. Chichester: John Wiley & Sons; 2009. (PMID: 10.1002/9780470743386)
Assink M, Wibbelink CJ. Fitting three-level meta-analytic models in R: a step-by-step tutorial. Quant Methods Psychol. 2016;12(3):154–74. https://doi.org/10.20982/tqmp.12.3.p154 . (PMID: 10.20982/tqmp.12.3.p154)
Pustejovsky JE, Tipton E. Meta-analysis with robust variance estimation: expanding the range of working models. Prev Sci. 2022;23(3):425–38. https://doi.org/10.1007/s11121-021-01246-3 . (PMID: 10.1007/s11121-021-01246-333961175)
Fisher ZT, Zhipeng Z. Robumeta: Robust variance meta-regression. https://github.com/zackfisher/robumeta . 2017.
Fisher Z, Tipton E. Robumeta: an R-package for robust variance estimation in meta-analysis. arXiv preprint arXiv:150302220. 2015.
Hawkins SA, Wiswell RA, Schroeder ET. The relationship between bone adaptations to resistance exercise and reproductive-hormone levels. J Aging Phys Act. 2002;10(1):64–75. https://doi.org/10.1123/japa.10.1.64 . (PMID: 10.1123/japa.10.1.64)
Holviala J, Hakkinen A, Karavirta L, Nyman K, Izquierdo M, Gorostiaga EM, et al. Effects of combined strength and endurance training on treadmill load carrying walking performance in aging men. J Strength Cond Res. 2010;24(6):1584–95. https://doi.org/10.1519/JSC.0b013e3181dba178 . (PMID: 10.1519/JSC.0b013e3181dba17820508463)
Martin-Hernandez J, Marin PJ, Menendez H, Ferrero C, Loenneke JP, Herrero AJ. Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sports. 2013;23(2):e114–20. https://doi.org/10.1111/sms.12036 . (PMID: 10.1111/sms.1203623278841)
Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, Abe T. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol. 2011;111(10):2525–33. https://doi.org/10.1007/s00421-011-1873-8 . (PMID: 10.1007/s00421-011-1873-821360203)
Marcinik EJ, Potts J, Schlabach G, Will S, Dawson P, Hurley B. Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc. 1991;23(6):739–43. (PMID: 10.1249/00005768-199106000-000141886483)
Botton CE, Radaelli R, Wilhelm EN, Rech A, Brown LE, Pinto RS. Neuromuscular adaptations to unilateral vs bilateral strength training in women. J Strength Cond Res. 2016;30(7):1924–32. https://doi.org/10.1519/JSC.0000000000001125 . (PMID: 10.1519/JSC.000000000000112526348920)
Colomer-Poveda D, Romero-Arenas S, Farinas J, Iglesias-Soler E, Hortobagyi T, Marquez G. Training load but not fatigue affects cross-education of maximal voluntary force. Scand J Med Sci Sports. 2021;31(2):313–24. https://doi.org/10.1111/sms.13844 . (PMID: 10.1111/sms.1384433038018)
Cheung MW. Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychol Methods. 2014;19(2):211–29. https://doi.org/10.1037/a0032968 . (PMID: 10.1037/a003296823834422)
Buckner SL, Kuehne TE, Yitzchaki N, Zhu WG, Humphries MN, Loenneke JP. The generality of strength adaptation. J Trainol. 2019;8(1):5–8. https://doi.org/10.17338/trainology.8.1_5 . (PMID: 10.17338/trainology.8.1_5)
Impellizzeri FM, McCall A, van Smeden M. Why methods matter in a meta-analysis: a reappraisal showed inconclusive injury preventive effect of Nordic hamstring exercise. J Clin Epidemiol. 2021;140:111–24. https://doi.org/10.1016/j.jclinepi.2021.09.007 . (PMID: 10.1016/j.jclinepi.2021.09.00734520846)
Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30. (PMID: 453338)
Ikai M, Fukunaga T. A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int Z Angew Physiol. 1970;28(3):173–80. https://doi.org/10.1007/BF00696025 . (PMID: 10.1007/BF006960255425330)
Taber CB, Vigotsky A, Nuckols G, Haun CT. Exercise-induced myofibrillar hypertrophy is a contributory cause of gains in muscle strength. Sports Med. 2019;49(7):993–7. https://doi.org/10.1007/s40279-019-01107-8 . (PMID: 10.1007/s40279-019-01107-831016546)
Loenneke JP, Buckner SL, Dankel SJ, Abe T. Exercise-induced changes in muscle size do not contribute to exercise-induced changes in muscle strength. Sports Med. 2019;49(7):987–91. https://doi.org/10.1007/s40279-019-01106-9 . (PMID: 10.1007/s40279-019-01106-931020548)
Jessee MB, Buckner SL, Mouser JG, Mattocks KT, Dankel SJ, Abe T, et al. Muscle adaptations to high-load training and very low-load training with and without blood flow restriction. Front Physiol. 2018;9:1448. https://doi.org/10.3389/fphys.2018.01448 . (PMID: 10.3389/fphys.2018.01448303862546198179)
Clark BC, Manini TM, Hoffman RL, Williams PS, Guiler MK, Knutson MJ, et al. Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports. 2011;21(5):653–62. https://doi.org/10.1111/j.1600-0838.2010.01100.x . (PMID: 10.1111/j.1600-0838.2010.01100.x21917016)
Fink J, Kikuchi N, Yoshida S, Terada K, Nakazato K. Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus. 2016;5(1):698. https://doi.org/10.1186/s40064-016-2333-z . (PMID: 10.1186/s40064-016-2333-z273509284899398)
Gentil P, Del Vecchio FB, Paoli A, Schoenfeld BJ, Bottaro M. Isokinetic dynamometry and 1RM tests produce conflicting results for assessing alterations in muscle strength. J Hum Kinet. 2017;56:19–27. https://doi.org/10.1515/hukin-2017-0019 . (PMID: 10.1515/hukin-2017-0019284697405384049)
Mercuri M, Gafni A. The evolution of GRADE (part 3): a framework built on science or faith? J Eval Clin Pract. 2018;24(5):1223–31. https://doi.org/10.1111/jep.13016 . (PMID: 10.1111/jep.1301630066429)
Mercuri M, Gafni A. The evolution of GRADE (part 2): still searching for a theoretical and/or empirical basis for the GRADE framework. J Eval Clin Pract. 2018;24(5):1211–22. https://doi.org/10.1111/jep.12997 . (PMID: 10.1111/jep.1299730015389)
Mercuri M, Gafni A. The evolution of GRADE (part 1): Is there a theoretical and/or empirical basis for the GRADE framework? J Eval Clin Pract. 2018;24(5):1203–10. https://doi.org/10.1111/jep.12998 . (PMID: 10.1111/jep.1299830009394)
Entry Date(s):
Date Created: 20221117 Date Completed: 20230222 Latest Revision: 20230309
Update Code:
20240104
DOI:
10.1007/s40279-022-01790-0
PMID:
36396899
Raport
Background: Isotonic exercise is the most common mode of strength training. Isotonic strength is often measured in the movement that was exercised, but isometric and isokinetic movements are also commonly used to quantify changes in muscular strength. Previous research suggests that increasing strength in one movement may not lead to an increase in strength in a different movement. Quantifying the increase in strength in a movement not trained may be important for understanding strength training adaptations and making recommendations for resistance exercise and rehabilitation programs.
Objective: To quantify changes in non-specific strength relative to a control.
Design: A systematic review and random effects meta-analysis was conducted investigating the effects of isotonic strength training on isotonic and isokinetic/isometric strength.
Search and Inclusion: This systematic review was conducted in Google scholar, PubMed, Academic Search Premier, and MENDELEY. To be included in this review paper the article needed to meet the following criteria: (1) report sufficient data for our variables of interest (i.e., changes in isotonic strength and changes in isokinetic or isometric strength); (2) include a time-matched non-exercise control; (3) be written in English; (4) include healthy human participants over the age of 18 years; (5) the participants had to train and test isotonically; (6) the participants had to be tested isokinetically or isometrically on a device different from that they trained on; (7) the non-specific strength task had to test a muscle involved in the training (i.e., could not have trained chest press and test handgrip strength); and (8) the control group and the experimental group had to perform the same number of strength tests.
Results: We completed two separate searches. In the original search a total of 880 papers were screened and nine papers met the inclusion criteria. In the secondary search a total of 2594 papers were screened and three additional papers were added (total of 12 studies). The overall effect of resistance training on changes in strength within a movement that was not directly trained was 0.8 (Cohen's d) with a standard error of 0.286. This overall effect was significant (t = 2.821, p = 0.01) and the 95% confidence interval (CI) is 0.22-1.4. The overall effect of resistance training on strength changes within a movement that was directly trained was 1.84 (Cohen's d) with a standard error of 0.296. This overall effect was significant (t = 6.221, p < 0.001) and the 95% CI is 1.23-2.4.
Conclusion: The results of our meta-analysis suggest that strength increases in both the specific and non-specific strength tests. However, the smaller effect size associated with non-specific strength suggests that it will be difficult for a single study to meaningfully investigate the transfer of strength training adaptions.
(© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies