Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Aerobic degradation of bisphenol A by Pseudomonas sp. LM-1: characteristic and pathway.

Tytuł:
Aerobic degradation of bisphenol A by Pseudomonas sp. LM-1: characteristic and pathway.
Autorzy:
Gu C; Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China.
Liang J; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
Liu M; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
Rui J; Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China.
Shi J; MOE Key Lab of Environmental Remediation and Ecosystem Health, and Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Yu Y; Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China.
Zhang X; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China. .
Źródło:
Biodegradation [Biodegradation] 2023 Feb; Vol. 34 (1), pp. 73-81. Date of Electronic Publication: 2022 Nov 19.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Dordrecht ; Boston : Kluwer Academic Publishers, c1990-
MeSH Terms:
Pseudomonas*/metabolism
Phenols*/metabolism
RNA, Ribosomal, 16S/genetics ; Benzhydryl Compounds/metabolism ; Biodegradation, Environmental ; Carbon
References:
Cydzik-Kwiatkowska A, Zielińska M, Bernat K, Bułkowska K, Wojnowska-Baryła I (2020) Insights into mechanisms of bisphenol A biodegradation in aerobic granular sludge. Biores Technol 315:123806. (PMID: 10.1016/j.biortech.2020.123806)
Eio EJ, Kawai M, Tsuchiya K, Yamamoto S, Toda T (2014) Biodegradation of bisphenol A by bacterial consortia. Int Biodeterior Biodegradation 96:166–173. (PMID: 10.1016/j.ibiod.2014.09.011)
Fischer J, Kappelmeyer U, Kastner M, Schauer F, Heipieper HJ (2010) The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol. Int Biodeter Biodegrad 64(4):324–330. (PMID: 10.1016/j.ibiod.2010.03.007)
Frankowski R, Zgoła-Grześkowiak A, Smułek W, Grześkowiak T (2020) Removal of bisphenol A and its potential substitutes by biodegradation. Appl Biochem Biotechnol 191:1100–1110. (PMID: 10.1007/s12010-020-03247-4319603647320052)
Gao C, Zeng Y-H, Li C-Y, Li L, Cai Z-H, Zhou J (2022) Bisphenol A biodegradation by Sphingonomas sp. YK5 is regulated by acyl-homoserine lactone signaling molecules. Sci Total Environ 802:149898. (PMID: 10.1016/j.scitotenv.2021.14989834461476)
Gu C, Wang J, Liu S, Liu G, Lu H, Jin R (2016) Biogenic fenton-like reaction involvement in cometabolic degradation of tetrabromobisphenol A by Pseudomonas sp fz. Environ Sci Technol 50(18):9981–9989. (PMID: 10.1021/acs.est.6b0211627556415)
Gu C, Wang J, Guo MF, Sui M, Lu H, Liu GF (2018) Extracellular degradation of tetrabromobisphenol A via biogenic reactive oxygen species by a marine Pseudoalteromonas sp. Water Res 142:354–362. (PMID: 10.1016/j.watres.2018.06.01229908463)
Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström BW, Neretin L, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99. (PMID: 10.1016/j.envint.2011.04.01021596439)
Ike M, Jin CS, Fujita M (1995) Isolation and characterization of a novel bisphenol A-degrading bacterium Pseudomonas paucimobilis strain FJ-4. Jpn J Water Treat Biol 31(3):203–212. (PMID: 10.2521/jswtb.31.203)
Im J, Löffler FE (2016) Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol 50(16):8403–8416. (PMID: 10.1021/acs.est.6b0087727401879)
Jia Y, Eltoukhy A, Wang J, Li X, Yan Y (2020) Biodegradation of bisphenol A by Sphingobium sp. YC-JY1 and the essential role of cytochrome. Int J Mol Sci 21(10):3588. (PMID: 10.3390/ijms21103588324387307278973)
Jin Q, Kirk MF (2018) pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front Environ Sci 6:21. (PMID: 10.3389/fenvs.2018.00021)
Kang JH, Katayama Y, Kondo F (2006) Biodegradation or metabolism of bisphenol A: from microorganisms to mammals. Toxicology 217(2–3):81–90. (PMID: 10.1016/j.tox.2005.10.00116288945)
Li G, Zu L, Wong PK, Hui X, Lu Y, Xiong J, An T (2012) Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Biores Technol 114:224–230. (PMID: 10.1016/j.biortech.2012.03.067)
Lobos JH, Leib TK, Su TM (1992) Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol 58(6):1823–1831. (PMID: 10.1128/aem.58.6.1823-1831.19921622258195690)
Ma Q, Meng N, Li Y, Wang J (2021) Occurrence, impacts, and microbial transformation of 3-methylindole (skatole): a critical review. J Hazard Mater 416:126181. (PMID: 10.1016/j.jhazmat.2021.126181)
Masuda M, Yamasaki Y, Ueno S, Inoue A (2007) Isolation of bisphenol A-tolerant/degrading Pseudomonas monteilii strain N-502. Extremophiles 11(2):355–362. (PMID: 10.1007/s00792-006-0047-917160346)
Matsumura Y, Hosokawa C, Sasaki-Mori M, Akahira A, Fukunaga K, Ikeuchi T, Oshiman KI, Tsuchido T (2009) Isolation and characterization of novel bisphenol-A-degrading bacteria from soils. Biocontrol Sci 14(4):161–169. (PMID: 10.4265/bio.14.16120055221)
Michałowicz J (2014) Bisphenol A-sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37(2):738–758. (PMID: 10.1016/j.etap.2014.02.00324632011)
Noszczyńska M, Piotrowska-Seget Z (2018) Bisphenols: Application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers. Chemosphere 201:214–223. (PMID: 10.1016/j.chemosphere.2018.02.17929524822)
Noszczyńska M, Chodór M, Jałowiecki Ł, Piotrowska-Seget Z (2020) A comprehensive study on bisphenol A degradation by newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12. Biodegradation 32:1–15. (PMID: 10.1007/s10532-020-09919-6332053497940318)
Oshiman K, Tsutsumi Y, Nishida T, Matsumura Y (2007) Isolation and characterization of a novel bacterium, Sphingomonas bisphenolicum strain AO1, that degrades bisphenol A. Biodegradation 18:247–255. (PMID: 10.1007/s10532-006-9059-516821103)
Peng YH, Chen YJ, Chang YJ, Shih YH (2015) Biodegradation of bisphenol A with diverse microorganisms from river sediment. J Hazard Mater 286:285–290. (PMID: 10.1016/j.jhazmat.2014.12.05125590822)
Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93:2270–2290. (PMID: 10.1007/s00253-012-3928-0)
Reddy PV, Kim K-H, Kavitha B, Kumar V, Raza N, Kalagara S (2018) Photocatalytic degradation of bisphenol A in aqueous media: a review. J Environ Mange 213:189–205. (PMID: 10.1016/j.jenvman.2018.02.059)
Sakai K, Yamanaka H, Moriyoshi K, Ohmoto T, Ohe T (2007) Biodegradation of bisphenol A and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater. Biosci Biotechnol Biochem 71:51–57. (PMID: 10.1271/bbb.6035117213659)
Sasaki M, Maki J, Oshiman K, Matsumura Y, Tsuchido T (2005) Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 16:449–459. (PMID: 10.1007/s10532-004-5023-415865158)
Seyhi B, Drogui P, Buelna G, Blais JF (2013) Biodegradation of bisphenol-A in aerobic membrane bioreactor sludge. Water Sci Technol 68(9):1926–1931. (PMID: 10.2166/wst.2013.44224225091)
Shuttleworth KL, Cerniglia E (1995) Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 54(1–3):291–302. (PMID: 10.1007/BF027879277486983)
Skledar DG, Mašič LP (2016) Bisphenol A and its analogs: do their metabolites have endocrine activity? Environ Toxicol Pharmacol 47:182–199. (PMID: 10.1016/j.etap.2016.09.014)
Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36(10):2149–2173. (PMID: 10.1016/S0045-6535(97)10133-39566294)
Telke AA, Kalyani DC, Jadhav UU, Parshetti GK, Govindwar SP (2009) Purification and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. J Mol Catal B Enzym 61:252–260. (PMID: 10.1016/j.molcatb.2009.08.001)
Zhang C, Zeng G, Yuan L, Yu J, Li J, Huang G, Xi B, Liu H (2007) Aerobic degradation of bisphenol A by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere 68(1):181–190. (PMID: 10.1016/j.chemosphere.2006.12.01217291567)
Zhang W, Yin K, Chen L (2013) Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol 97(13):5681–5689. (PMID: 10.1007/s00253-013-4949-z23681588)
Zhang X, Jing J, Zhang L, Song Z, Zhou H, Wu M, Qu Y, Liu L (2019) Biodegradation characteristics and genomic functional analysis of indole-degrading bacterial strain Acinetobacter sp. JW. J Chem Technol Biotechnol 94(4):1114–1122. (PMID: 10.1002/jctb.5858)
Zhang X, Song Z, Tang Q, Wu M, Zhou H, Liu L, Qu Y (2021) Performance and microbial community analysis of bioaugmented activated sludge for nitrogen-containing organic pollutants removal. J Environ Sci 101:373–381. (PMID: 10.1016/j.jes.2020.09.002)
Zhou NA, Kjeldal H, Gough HL, Nielsen J (2015) Identification of putative genes involved in bisphenol A degradation using differential protein abundance analysis of Sphingobium sp. BiD32. Environ Sci Technol 49:12232–12241. (PMID: 10.1021/acs.est.5b0298726390302)
Zhu SN, Liu DQ, Fan L, Ni JR (2008) Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge. J Hazard Mater 160(2–3):289–294. (PMID: 10.1016/j.jhazmat.2008.02.11218420344)
Grant Information:
No. DUT19JC17 Fundamental Research Funds for Central Universities of the Central South University; ZJ2021022 Postdoctoral Advance Programs of Zhejiang Province
Contributed Indexing:
Keywords: Biodegradation; Bisphenol A; Metabolites; Pseudomonas
Substance Nomenclature:
MLT3645I99 (bisphenol A)
0 (RNA, Ribosomal, 16S)
0 (Phenols)
0 (Benzhydryl Compounds)
7440-44-0 (Carbon)
Entry Date(s):
Date Created: 20221118 Date Completed: 20230222 Latest Revision: 20230223
Update Code:
20240104
DOI:
10.1007/s10532-022-10003-4
PMID:
36401058
Czasopismo naukowe
Bisphenol A (BPA) has been widely used in the manufacture of polymeric materials. BPA is regarded as an endocrine disrupting chemical, posing a great threat to the public health. In this study, a bacterial strain LM-1, capable of utilizing BPA as the sole carbon and energy source under aerobic conditions, was originally isolated from an activated sludge sample. The isolate was identified as Pseudomonas sp. based on 16S rRNA gene sequence analysis. Strain LM-1 was able to completely degrade 25-100 mg/L BPA within 14-24 h, and it also exhibited high capacity for BPA degradation at a range of pH (6.0-8.0). (NH 4 ) 2 SO 4 and NH 4 NO 3 were the suitable nitrogen sources for its growth and BPA biodegradation, and the BPA degradation could be accelerated when exogenous carbon sources were introduced as the co-substrates. Metal ions such as Zn 2+ , Cu 2+ , and Ni 2+ could considerably suppress the growth of strain LM-1 and BPA degradation. According to the analysis of liquid chromatography coupled to Q-Exactive high resolution mass spectrometry, hydroquinone, p-hydroxybenzaldehyde, and p-hydroxybenzoate were the predominate metabolites in the BPA biodegradation and the degradation pathways were proposed. This study is important for assessment of the fate of BPA in engineered and natural systems and possibly for designing bioremediation strategies.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies