Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Uncertainty-aware physics-driven deep learning network for free-breathing liver fat and R 2 * quantification using self-gated stack-of-radial MRI.

Tytuł:
Uncertainty-aware physics-driven deep learning network for free-breathing liver fat and R 2 * quantification using self-gated stack-of-radial MRI.
Autorzy:
Shih SF; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.; Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.
Kafali SG; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.; Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.
Calkins KL; Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
Wu HH; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.; Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.
Źródło:
Magnetic resonance in medicine [Magn Reson Med] 2023 Apr; Vol. 89 (4), pp. 1567-1585. Date of Electronic Publication: 2022 Nov 25.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Publication: 1999- : New York, NY : Wiley
Original Publication: San Diego : Academic Press,
MeSH Terms:
Deep Learning*
Humans ; Uncertainty ; Image Interpretation, Computer-Assisted/methods ; Liver/diagnostic imaging ; Magnetic Resonance Imaging/methods ; Protons
References:
Magn Reson Med. 2018 Jan;79(1):370-382. (PMID: 28419582)
Magn Reson Med. 2007 Dec;58(6):1182-95. (PMID: 17969013)
Top Magn Reson Imaging. 2014 Apr;23(2):73-94. (PMID: 24690618)
JAMA. 2015 Jun 9;313(22):2263-73. (PMID: 26057287)
Magn Reson Imaging. 2022 Jan;85:141-152. (PMID: 34662702)
Magn Reson Med. 2020 Jun;83(6):1964-1978. (PMID: 31682016)
IEEE Signal Process Mag. 2020 Jan;37(1):141-151. (PMID: 33746470)
Magn Reson Med. 2021 Apr;85(4):2263-2277. (PMID: 33107127)
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:433-437. (PMID: 35024087)
J Biomed Inform. 2009 Apr;42(2):377-81. (PMID: 18929686)
Magn Reson Med. 2019 Sep;82(3):1177-1186. (PMID: 31033022)
J Magn Reson Imaging. 2019 Aug;50(2):655-665. (PMID: 30701621)
Mod Pathol. 2007 Feb;20 Suppl 1:S31-9. (PMID: 17486050)
J Magn Reson Imaging. 2011 Apr;33(4):873-81. (PMID: 21448952)
Hepatol Int. 2009 Sep;3(3):434-44. (PMID: 19669241)
Med Image Anal. 2019 Dec;58:101552. (PMID: 31521965)
Magn Reson Med. 2019 Nov;82(5):1890-1904. (PMID: 31166049)
Magn Reson Med. 2010 Jan;63(1):79-90. (PMID: 19859956)
Hepatology. 2006 Sep;44(3):521-6. (PMID: 16941687)
IEEE Trans Med Imaging. 2022 Feb;41(2):360-373. (PMID: 34543193)
Med Sci Monit. 2016 Jun 22;22:2144-51. (PMID: 27332079)
IEEE Trans Med Imaging. 2021 Jan;40(1):239-250. (PMID: 32956045)
Magn Reson Imaging. 2020 Nov;73:152-162. (PMID: 32882339)
World J Hepatol. 2015 Feb 27;7(2):177-88. (PMID: 25729473)
World J Gastroenterol. 2014 Jan 14;20(2):475-85. (PMID: 24574716)
Magn Reson Med. 2020 Nov;84(5):2831-2845. (PMID: 32416010)
J Hepatol. 2011 Oct;55(4):920-32. (PMID: 21718726)
Magn Reson Med. 2014 Nov;72(5):1353-65. (PMID: 24323332)
J Lipid Res. 2008 Sep;49(9):2055-62. (PMID: 18509197)
Metabolism. 2016 Aug;65(8):1151-60. (PMID: 26907206)
Magn Reson Med. 2010 Dec;64(6):1749-59. (PMID: 20859998)
Magn Reson Med. 2018 Sep;80(3):1189-1205. (PMID: 29399869)
IEEE Trans Med Imaging. 2020 Mar;39(3):703-717. (PMID: 31403407)
Magn Reson Med. 2020 Nov;84(5):2592-2605. (PMID: 32301168)
Med Phys. 2018 May;45(5):2023-2032. (PMID: 29574939)
Hepatology. 2005 Jul;42(1):5-13. (PMID: 15962320)
Radiother Oncol. 2021 Jun;159:209-217. (PMID: 33812914)
Magn Reson Med. 2019 Jun;81(6):3915-3923. (PMID: 30756432)
Magn Reson Med. 2019 Jul;82(1):476-484. (PMID: 30790344)
Magn Reson Med. 2016 Feb;75(2):775-88. (PMID: 25809847)
Aliment Pharmacol Ther. 2011 Aug;34(3):274-85. (PMID: 21623852)
Pediatr Radiol. 2018 Jul;48(7):941-953. (PMID: 29728744)
Magn Reson Med. 2021 May;85(5):2828-2841. (PMID: 33231896)
Magn Reson Med. 2021 Mar;85(3):1195-1208. (PMID: 32924188)
Magn Reson Med. 2015 Mar;73(3):1289-99. (PMID: 24604689)
IEEE Trans Biomed Eng. 2018 Sep;65(9):1985-1995. (PMID: 29993390)
Grant Information:
R01 DK124417 United States DK NIDDK NIH HHS; UL1 TR001881 United States TR NCATS NIH HHS; UL1TR001881 United States TR NCATS NIH HHS
Contributed Indexing:
Keywords: R2*; deep learning reconstruction; deep learning uncertainty; free-breathing radial MRI; liver; proton-density fat fraction
Substance Nomenclature:
0 (Protons)
Entry Date(s):
Date Created: 20221125 Date Completed: 20230131 Latest Revision: 20240402
Update Code:
20240402
PubMed Central ID:
PMC9892263
DOI:
10.1002/mrm.29525
PMID:
36426730
Czasopismo naukowe
Purpose: To develop a deep learning-based method for rapid liver proton-density fat fraction (PDFF) and R 2 * quantification with built-in uncertainty estimation using self-gated free-breathing stack-of-radial MRI.
Methods: This work developed an uncertainty-aware physics-driven deep learning network (UP-Net) to (1) suppress radial streaking artifacts because of undersampling after self-gating, (2) calculate accurate quantitative maps, and (3) provide pixel-wise uncertainty maps. UP-Net incorporated a phase augmentation strategy, generative adversarial network architecture, and an MRI physics loss term based on a fat-water and R 2 * signal model. UP-Net was trained and tested using free-breathing multi-echo stack-of-radial MRI data from 105 subjects. UP-Net uncertainty scores were calibrated in a validation dataset and used to predict quantification errors for liver PDFF and R 2 * in a testing dataset.
Results: Compared with images reconstructed using compressed sensing (CS), UP-Net achieved structural similarity index >0.87 and normalized root mean squared error <0.18. Compared with reference quantitative maps generated using CS and graph-cut (GC) algorithms, UP-Net achieved low mean differences (MD) for liver PDFF (-0.36%) and R 2 * (-0.37 s -1 ). Compared with breath-holding Cartesian MRI results, UP-Net achieved low MD for liver PDFF (0.53%) and R 2 * (6.75 s -1 ). UP-Net uncertainty scores predicted absolute liver PDFF and R 2 * errors with low MD of 0.27% and 0.12 s -1 compared to CS + GC results. The computational time for UP-Net was 79 ms/slice, whereas CS + GC required 3.2 min/slice.
Conclusion: UP-Net rapidly calculates accurate liver PDFF and R 2 * maps from self-gated free-breathing stack-of-radial MRI. The pixel-wise uncertainty maps from UP-Net predict quantification errors in the liver.
(© 2022 International Society for Magnetic Resonance in Medicine.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies