Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Is small for gestational age status independently correlated with body composition during childhood?

Tytuł:
Is small for gestational age status independently correlated with body composition during childhood?
Autorzy:
Balomenou F; Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, Ioannina, Greece.
Rallis D; Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, Ioannina, Greece. .
Evangelou F; Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, Ioannina, Greece.
Zisi A; Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, Ioannina, Greece.
Balomenou K; Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, Ioannina, Greece.
Tsekas N; Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, Ioannina, Greece.
Tzoufi M; Department of Paediatrics, School of Medicine, University of Ioannina, Ioannina, Greece.
Siomou E; Department of Paediatrics, School of Medicine, University of Ioannina, Ioannina, Greece.
Giapros V; Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, Ioannina, Greece.
Źródło:
European journal of pediatrics [Eur J Pediatr] 2023 Feb; Vol. 182 (2), pp. 661-668. Date of Electronic Publication: 2022 Nov 29.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Berlin : Springer Verlag
Original Publication: Berlin, New York, Springer-Verlag.
MeSH Terms:
Infant, Small for Gestational Age*
Body Composition*
Infant, Newborn ; Child ; Humans ; Birth Weight ; Gestational Age ; Anthropometry ; Body Mass Index
References:
Ong KK (2006) Size at birth, postnatal growth and risk of obesity. Horm Res 65(Suppl 3):65–69.
Nam HK, Lee KH (2018) Small for gestational age and obesity: epidemiology and general risks. Ann Pediatr Endocrinol Metab 23:9–13. (PMID: 10.6065/apem.2018.23.1.9)
Saenger P, Czernichow P, Hughes I, Reiter EO (2007) Small for gestational age: short stature and beyond. Endocr Rev 28:219–251. (PMID: 10.1210/er.2006-0039)
Yu ZB, Han SP, Zhu GZ, Zhu C, Wang XJ, Cao XG, Guo XR (2011) Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev 12:525–542. (PMID: 10.1111/j.1467-789X.2011.00867.x)
Manapurath R, Gadapani B, Pereira-da-Silva L (2022) Body composition of infants born with intrauterine growth restriction: a systematic review and meta-analysis. Nutrients 14.
Bamberg C, Kalache KD (2004) Prenatal diagnosis of fetal growth restriction. Semin Fetal Neonatal Med 9:387–394. (PMID: 10.1016/j.siny.2004.03.007)
Hediger ML, Overpeck MD, McGlynn A, Kuczmarski RJ, Maurer KR, Davis WW (1999) Growth and fatness at three to six years of age of children born small- or large-for-gestational age. Pediatrics 104:e33. (PMID: 10.1542/peds.104.3.e33)
Kramer MS, Martin RM, Bogdanovich N, Vilchuk K, Dahhou M, Oken E (2014) Is restricted fetal growth associated with later adiposity? Observational analysis of a randomized trial. Am J Clin Nutr 100:176–181. (PMID: 10.3945/ajcn.113.079590)
Rogers IS, Ness AR, Steer CD, Wells JC, Emmett PM, Reilly JR, Tobias J, Smith GD (2006) Associations of size at birth and dual-energy X-ray absorptiometry measures of lean and fat mass at 9 to 10 y of age. Am J Clin Nutr 84:739–747. (PMID: 10.1093/ajcn/84.4.739)
Crume TL, Scherzinger A, Stamm E, McDuffie R, Bischoff KJ, Hamman RF, Dabelea D (2014) The long-term impact of intrauterine growth restriction in a diverse U.S. cohort of children: the EPOCH study. Obesity (Silver Spring) 22:608–615.
Ibanez L, Ong K, Dunger DB, de Zegher F (2006) Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab 91:2153–2158. (PMID: 10.1210/jc.2005-2778)
Meas T, Deghmoun S, Armoogum P, Alberti C, Levy-Marchal C (2008) Consequences of being born small for gestational age on body composition: an 8-year follow-up study. J Clin Endocrinol Metab 93:3804–3809. (PMID: 10.1210/jc.2008-0488)
Ibanez L, Lopez-Bermejo A, Suarez L, Marcos MV, Diaz M, de Zegher F (2008) Visceral adiposity without overweight in children born small for gestational age. J Clin Endocrinol Metab 93:2079–2083. (PMID: 10.1210/jc.2007-2850)
Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941. (PMID: 10.1016/0140-6736(93)91224-A)
Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20. (PMID: 10.1093/bmb/60.1.5)
Lucas A, Fewtrell MS, Cole TJ (1999) Fetal origins of adult disease-the hypothesis revisited. BMJ 319:245–249. (PMID: 10.1136/bmj.319.7204.245)
Rallis D, Balomenou F, Tzoufi M, Giapros V (2021) A systematic review indicates an association between birth weight and body fat in childhood. Acta Paediatr.
Villar J, Giuliani F, Bhutta ZA, Bertino E, Ohuma EO, Ismail LC, Barros FC, Altman DG, Victora C, Noble JA, Gravett MG, Purwar M, Pang R, Lambert A, Papageorghiou AT, Ochieng R, Jaffer YA, Kennedy SH (2015) International F, Newborn Growth Consortium for the C. Postnatal growth standards for preterm infants: the preterm postnatal follow-up study of the INTERGROWTH-21(st) Project. Lancet Glob Health 3:e681–691.
McCowan LM, Figueras F, Anderson NH (2018) Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am J Obstet Gynecol 218:S855–S868. (PMID: 10.1016/j.ajog.2017.12.004)
Figueras F, Gratacos E (2014) Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther 36:86–98. (PMID: 10.1159/000357592)
Scherdel P, Botton J, Rolland-Cachera MF, Leger J, Pele F, Ancel PY, Simon C, Castetbon K, Salanave B, Thibault H, Lioret S, Peneau S, Gusto G, Charles MA, Heude B (2015) Should the WHO growth charts be used in France? PLoS ONE 10:e0120806. (PMID: 10.1371/journal.pone.0120806)
Baker-Smith CM, Flinn SK, Flynn JT, Kaelber DC, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM (2018) Subcommittee On S, Management Of High Bp In C. Diagnosis, evaluation, and management of high blood pressure in children and adolescents. Pediatrics 142.
Houtkooper LB, Going SB, Lohman TG, Roche AF, Van Loan M (1985) Bioelectrical impedance estimation of fat-free body mass in children and youth: a cross-validation study. J Appl Physiol 1992(72):366–373.
Andrews ET, Beattie RM, Johnson MJ (2019) Measuring body composition in the preterm infant: evidence base and practicalities. Clin Nutr 38:2521–2530. (PMID: 10.1016/j.clnu.2018.12.033)
Demerath EW, Fields DA (2014) Body composition assessment in the infant. Am J Hum Biol 26:291–304. (PMID: 10.1002/ajhb.22500)
Mu M, Wang SF, Sheng J, Zhao Y, Li HZ, Hu CL, Tao FB (2012) Birth weight and subsequent blood pressure: a meta-analysis. Arch Cardiovasc Dis 105:99–113. (PMID: 10.1016/j.acvd.2011.10.006)
Basioti M, Giapros V, Kostoula A, Cholevas V, Andronikou S (2009) Growth restriction at birth and kidney function during childhood. Am J Kidney Dis 54:850–858. (PMID: 10.1053/j.ajkd.2009.05.017)
Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE (2013) Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382:273–283. (PMID: 10.1016/S0140-6736(13)60311-6)
Woo Baidal JA, Locks LM, Cheng ER, Blake-Lamb TL, Perkins ME, Taveras EM (2016) Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am J Prev Med 50:761–779. (PMID: 10.1016/j.amepre.2015.11.012)
Griffin IJ, Cooke RJ (2012) Development of whole body adiposity in preterm infants. Early Hum Dev 88(Suppl 1):S19-24. (PMID: 10.1016/j.earlhumdev.2011.12.023)
Gallo P, Cioffi L, Limauro R, Farris E, Bianco V, Sassi R, De Giovanni M, Gallo V, D'Onofrio A, Di Maio S (2016) SGA children in pediatric primary care: what is the best choice, large or small? A 10-year prospective longitudinal study. Glob Pediatr Health 3:2333794X16659993.
Contributed Indexing:
Keywords: Adiposity; Body composition; Deviant birth weight; Metabolic syndrome; Obesity
Entry Date(s):
Date Created: 20221129 Date Completed: 20230207 Latest Revision: 20230626
Update Code:
20240105
PubMed Central ID:
PMC9899173
DOI:
10.1007/s00431-022-04723-1
PMID:
36445515
Czasopismo naukowe
This study aims to examine if small for gestation age (SGA) status is correlated with alterations in body composition at prepuberty, independently of other factors, comparing SGA-born children with appropriate for gestational age (AGA)-born children. We examined anthropometrics, waist circumference, body mass index (BMI), six skinfold thickness, and body composition using the method of bioelectrical impedance in 636 children aged 7 to 10 years. We also considered age, gender, birth mode, mother's age, prepregnancy weight, weight gain during pregnancy, social status, parental BMI, type of feeding, and daily exercise. We examined 636 children at a mean age of 9 years: 106 SGA-born and 530 AGA-born children. SGA as compared to AGA-born children had a lower BMI z-score (0.26 ± 0.89 kg/cm 2 vs 0.46 ± 0.84 kg/cm 2 , p < 0.050) and a lower lean mass, although that was not statistically significant (24.0 ± 6.6 kg vs 25.6 ± 6.4 kg, p < 0.100). SGA-born children presented no difference in waist circumference or fat mass in comparison to children born AGA. Logistic regression analysis revealed a strong independent negative association between SGA status and BMI (beta =  - 2.33, OR = 0.70 p = 0.019) and SGA status and lean mass (beta =  - 2.43, OR = 0.95 p = 0.010).  Conclusion: Our findings suggest that SGA-born children had a lower BMI as compared to AGA-born subjects, whereas SGA status was negatively associated with BMI and lean mass. What is Known: • Deviant birth weight for gestation has been associated with an increased risk of childhood adiposity. • Evidence remains scarce on whether small for gestational age status affects body composition and obesity later in childhood. What is New: • Among school-aged children, small for gestational age subjects had a lower body mass index as compared to appropriate for gestational age counterparts, whereas small for gestational age status was negatively associated with body mass index and lean mass. • A meticulous observation is needed during childhood in children born with deviant birth weight.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies