Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

NOS2/miR-493-5p Signaling Regulates in the LPS-Induced Inflammatory Response in the RAW264.7 Cells.

Tytuł:
NOS2/miR-493-5p Signaling Regulates in the LPS-Induced Inflammatory Response in the RAW264.7 Cells.
Autorzy:
Li X; Clinical Laboratory, The Third People's Hospital of Kunming, Kunming, China.
Yang Y; Department of Hepatology, The Third People's Hospital of Kunming, Kunming, China.
Lu N; Department of Respiratory Medicine, The Third People's Hospital of Kunming, Kunming, China.
Luo F; Clinical Laboratory, The Third People's Hospital of Kunming, Kunming, China.
Fan R; School of Public Health, Dali University, Dali, China.
Peng N; School of Life Science and Technology and School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. .
Źródło:
Biochemical genetics [Biochem Genet] 2023 Jun; Vol. 61 (3), pp. 1097-1112. Date of Electronic Publication: 2022 Nov 30.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1999- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
MeSH Terms:
MicroRNAs*/genetics
MicroRNAs*/metabolism
Tuberculosis*/metabolism
Animals ; Mice ; Cytokines/metabolism ; Inflammation/metabolism ; Inflammation/microbiology ; Lipopolysaccharides/pharmacology ; Nitric Oxide Synthase Type II/genetics ; Nitric Oxide Synthase Type II/metabolism ; Signal Transduction
References:
Alffenaar JW, Märtson AG, Heysell SK, Cho JG, Patanwala A, Burch G, Kim HY, Sturkenboom MGG, Byrne A, Marriott D, Sandaradura I, Tiberi S, Sintchencko V, Srivastava S, Peloquin CA (2021) Therapeutic drug monitoring in non-tuberculosis mycobacteria infections. Clin Pharmacokinet. https://doi.org/10.1007/s40262-021-01000-6. (PMID: 10.1007/s40262-021-01000-6338113128249269)
Allué-Guardia A, García JI, Torrelles JB (2021) Evolution of drug-resistant Mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front Microbiol 12:612675. (PMID: 10.3389/fmicb.2021.612675336134837889510)
Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U (2021) Composition and clinical significance of exosomes in tuberculosis: a systematic literature review. J Clin Med. https://doi.org/10.3390/jcm10010145. (PMID: 10.3390/jcm10010145334067507795701)
Bolajoko EB, Arinola OG, Odaibo GN, Maiga M (2020) Plasma levels of tumor necrosis factor-alpha, interferon-gamma, inducible nitric oxide synthase, and 3-nitrotyrosine in drug-resistant and drug-sensitive pulmonary tuberculosis patients, Ibadan, Nigeria. Int J Mycobacteriol 9:185–189. (PMID: 10.4103/ijmy.ijmy_63_2032474541)
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128. (PMID: 10.1186/1471-2105-14-128)
Choi K, Ratner N (2019) iGEAK: an interactive gene expression analysis kit for seamless workflow using the R/shiny platform. BMC Genomics 20:177. (PMID: 10.1186/s12864-019-5548-x308418536404331)
Civello AN, Spiropoulos J, Sánchez-Cordón PJ, Hicks DJ, Hogarth PJ, Birch C, Núñez A (2020) The effect of BCG vaccination on macrophage phenotype in a mouse model of intranasal Mycobacterium bovis challenge. Vaccine 38:4755–4761. (PMID: 10.1016/j.vaccine.2020.05.03332451209)
Costa DL, Amaral EP, Namasivayam S, Mittereder LR, Fisher L, Bonfim CC, Sardinha-Silva A, Thompson RW, Hieny SE, Andrade BB, Sher A (2021) Heme oxygenase-1 inhibition promotes IFNγ- and NOS2-mediated control of Mycobacterium tuberculosis infection. Mucosal Immunol 14:253–266. (PMID: 10.1038/s41385-020-00342-x32862202)
Cui F, Luo P, Bai Y, Meng J (2021) Silencing of long non-coding RNA FGD5-AS1 Inhibits the progression of non-small cell lung cancer by regulating the miR-493-5p/DDX5 Axis. Technol Cancer Res Treat 20:1533033821990007. (PMID: 10.1177/1533033821990007335509577876571)
Gengenbacher M, Duque-Correa MA, Kaiser P, Schuerer S, Lazar D, Zedler U, Reece ST, Nayyar A, Cole ST, Makarov V, Barry Iii CE, Dartois V, Kaufmann SHE (2017) NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans. Sci Rep 7:8853. (PMID: 10.1038/s41598-017-09177-2288218045562869)
Grzelak EM, Choules MP, Gao W, Cai G, Wan B, Wang Y, McAlpine JB, Cheng J, Jin Y, Lee H, Suh JW, Pauli GF, Franzblau SG, Jaki BU, Cho S (2019) Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening. J Antibiot 72:719–728. (PMID: 10.1038/s41429-019-0205-9)
Gutiérrez-González LH, Juárez E, Carranza C, Carreto-Binaghi LE, Alejandre A, Cabello-Gutiérrrez C, Gonzalez Y (2021) Immunological aspects of diagnosis and management of childhood tuberculosis. Infect Drug Resist 14:929–946. (PMID: 10.2147/IDR.S295798337278347955028)
Huang L, Nazarova EV, Tan S, Liu Y, Russell DG (2018) Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med 215:1135–1152. (PMID: 10.1084/jem.20172020295001795881470)
Huang C, Wang Q, Ma S, Sun Y, Vadamootoo AS, Jin C (2019) A four serum-miRNA panel serves as a potential diagnostic biomarker of osteosarcoma. Int J Clin Oncol 24:976–982. (PMID: 10.1007/s10147-019-01433-x31111286)
Le Y, Cao W, Zhou L, Fan X, Liu Q, Liu F, Gai X, Chang C, Xiong J, Rao Y, Li A, Xu W, Liu B, Wang T, Wang B, Sun Y (2020) Infection of Mycobacterium tuberculosis promotes both M1/M2 polarization and MMP production in cigarette smoke-exposed macrophages. Front Immunol 11:1902. (PMID: 10.3389/fimmu.2020.01902329737887468417)
Leisching G, Pietersen RD, van Heerden C, van Helden P, Wiid I, Baker B (2017) RNAseq reveals hypervirulence-specific host responses to M. tuberculosis infection. Virulence 8:848–858. (PMID: 10.1080/21505594.2016.125099427763806)
Liu H, Xiong X, Zhu T, Zhu Y, Peng Y, Zhu X, Wang J, Chen H, Chen Y, Guo A (2020) Differential nitric oxide induced by Mycobacterium bovis and BCG leading to dendritic cells apoptosis in a caspase dependent manner. Microb Pathog 149:104303. (PMID: 10.1016/j.micpath.2020.10430332504845)
Mahi NA, Najafabadi MF, Pilarczyk M, Kouril M, Medvedovic M (2019) GREIN: an interactive web platform for re-analyzing GEO RNA-seq data. Sci Rep 9:7580. (PMID: 10.1038/s41598-019-43935-8311103046527554)
Meng QL, Liu F, Yang XY, Liu XM, Zhang X, Zhang C, Zhang ZD (2014) Identification of latent tuberculosis infection-related microRNAs in human U937 macrophages expressing Mycobacterium tuberculosis Hsp16.3. BMC Microbiol 14:37. (PMID: 10.1186/1471-2180-14-37245214223925440)
Mikušová K, Ekins S (2017) Learning from the past for TB drug discovery in the future. Drug Discov Today 22:534–545. (PMID: 10.1016/j.drudis.2016.09.02527717850)
Odia T, Malherbe ST, Meier S, Maasdorp E, Kleynhans L, du Plessis N, Loxton AG, Zak DE, Thompson E, Duffy FJ, Kuivaniemi H, Ronacher K, Winter J, Walzl G, Tromp G (2020) The peripheral blood transcriptome is correlated with PET measures of lung inflammation during successful tuberculosis treatment. Front Immunol 11:596173. (PMID: 10.3389/fimmu.2020.59617333643286)
Pahari S, Khan N, Aqdas M, Negi S, Kaur J, Agrewala JN (2016) Infergen Stimulated macrophages restrict Mycobacterium tuberculosis growth by autophagy and release of nitric oxide. Sci Rep 6:39492. (PMID: 10.1038/srep39492280007525175149)
Rath P, Huang C, Wang T, Wang T, Li H, Prados-Rosales R, Elemento O, Casadevall A, Nathan CF (2013) Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110:E4790–E4797. (PMID: 10.1073/pnas.1320118110242483693856836)
Rodrigues TS, Alvarez ARP, Gembre AF, Forni M, de Melo BMS, Alves Filho JCF, Câmara NOS, Bonato VLD (2020) Mycobacterium tuberculosis-infected alveolar epithelial cells modulate dendritic cell function through the HIF-1α-NOS2 axis. J Leukoc Biol 108:1225–1238. (PMID: 10.1002/JLB.3MA0520-113R32557929)
Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J (2001) The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun 69:7711–7717. (PMID: 10.1128/IAI.69.12.7711-7717.20011170595298866)
Scriba TJ, Netea MG, Ginsberg AM (2020) Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Semin Immunol 50:101431. (PMID: 10.1016/j.smim.2020.101431332793837786643)
Seki M, Choi H, Kim K, Whang J, Sung J, Mitarai S (2021) Tuberculosis: a persistent unpleasant neighbour of humans. J Infect Public Health 14:508–513. (PMID: 10.1016/j.jiph.2021.01.00533743373)
Shen J, Shi S, Lai Z (2018) Identification of HLA-DQA1 as a susceptibility gene for spinal tuberculosis by exome sequencing. Med Sci Monit 24:3442–3449. (PMID: 10.12659/MSM.907864297950565994962)
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607-d613. (PMID: 10.1093/nar/gky113130476243)
Tu H, Yang S, Jiang T, Wei L, Shi L, Liu C, Wang C, Huang H, Hu Y, Chen Z, Chen J, Li Z, Li J (2019) Elevated pulmonary tuberculosis biomarker miR-423-5p plays critical role in the occurrence of active TB by inhibiting autophagosome-lysosome fusion. Emerg Microbes Infect 8:448–460. (PMID: 10.1080/22221751.2019.1590129308980386455132)
Van den Bossche A, Varet H, Sury A, Sismeiro O, Legendre R, Coppee JY, Mathys V, Ceyssens PJ (2019) Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid. Tuberculosis (edinb) 117:18–23. (PMID: 10.1016/j.tube.2019.05.00231378263)
Yang C, Dai Y, Pang S, Guo X (2020) Efficacy of abiraterone combined with flutamide on prostate cancer patients and its effect on serum miR-493-5p and miR-195-5p. Oncol Lett 20:1922–1930. (PMID: 10.3892/ol.2020.11719327244367377194)
Yasukawa K, Liew LC, Hagiwara K, Hironaka-Mitsuhashi A, Qin XY, Furutani Y, Tanaka Y, Nakagama H, Kojima S, Kato T, Ochiya T, Gailhouste L (2020) MicroRNA-493-5p-mediated repression of the MYCN oncogene inhibits hepatic cancer cell growth and invasion. Cancer Sci 111:869–880. (PMID: 10.1111/cas.14292318831607060481)
Zhang Q, Sun J, Fu Y, He W, Li Y, Tan H, Xu H, Jiang X (2020) Guttiferone K exerts the anti-inflammatory effect on Mycobacterium Tuberculosis- (H37Ra-) infected macrophages by targeting the TLR/IRAK-1 mediated Akt and NF-κB pathway. Mediators Inflamm. https://doi.org/10.1155/2020/8528901. (PMID: 10.1155/2020/8528901334882937781729)
Contributed Indexing:
Keywords: Bioinformatics; Lipopolysaccharides; NOS2; RAW264.7 cells; Tuberculosis; miR-493-5p
Substance Nomenclature:
0 (Cytokines)
0 (Lipopolysaccharides)
0 (MicroRNAs)
EC 1.14.13.39 (Nitric Oxide Synthase Type II)
0 (MIRN493 microRNA, mouse)
Entry Date(s):
Date Created: 20221130 Date Completed: 20240122 Latest Revision: 20240122
Update Code:
20240122
DOI:
10.1007/s10528-022-10297-2
PMID:
36449151
Czasopismo naukowe
Tuberculosis (TB) is a fatal infectious disease; however, the molecular mechanisms underlying the pathogenicity of TB remain elusive. The present study aims to identify potential biomarkers associated with Mycobacterium tuberculosis (M.tb) infection by using integrated bioinformatics and in vitro validation studies. GSE50050, GSE78706, and GSE108844 data from the gene expression omnibus (GEO) database were downloaded to identify differentially expressed genes (DEGs). The functions of DEGs were further subjected to gene ontology (GO) and KEGG pathway analysis. The hub genes from the DEGs were determined based on the protein-protein interaction (PPI) network analysis. Finally, the hub genes were experimentally validated using the in vitro functional studies. A total of 26 common DEGs were identified among GSE50050, GSE78706, and GSE108844. The functional enrichment analysis showed that the common DEGs were associated with cytokines response and TB pathways. The PPI network analysis identified nine hub genes. Further in vitro studies showed that nitric oxide synthase 2 (NOS2) was up-regulated in RAW264.7 cells upon lipopolysaccharides (LPS) stimulation, which was accompanied by increased inflammatory cytokines release. Furthermore, NOS2 was found to be a target of miR-493-5p, which was confirmed by luciferase reporter assay. NOS2 was repressed by miR-493-5p overexpression and was up-regulated after miR-493-5p inhibition in RAW264.7 cells. The rescue experiments showed that LPS-induced increase in the inflammatory cytokines of the RAW264.7 cells was significantly attenuated by NOS2 knockdown and miR-493-5p overexpression. Collectively, our results for the first time demonstrated that NOS2/miR-493-5p signaling pathway may potentially involve in the inflammatory response during bacterial infection such as M. tb infection.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies