Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Computational epitope mapping of class I fusion proteins using low complexity supervised learning methods.

Tytuł:
Computational epitope mapping of class I fusion proteins using low complexity supervised learning methods.
Autorzy:
Fischer MFS; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America.; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America.
Crowe JE; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
Meiler J; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America.; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America.; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Saxony, Germany.
Źródło:
PLoS computational biology [PLoS Comput Biol] 2022 Dec 07; Vol. 18 (12), pp. e1010230. Date of Electronic Publication: 2022 Dec 07 (Print Publication: 2022).
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
MeSH Terms:
Antibodies, Monoclonal*
Antibodies, Neutralizing*
Epitope Mapping/methods ; Cryoelectron Microscopy ; Epitopes ; Supervised Machine Learning ; Antibodies, Viral
References:
Nat Commun. 2019 May 16;10(1):2190. (PMID: 31097697)
Vaccine. 2019 Sep 24;37(41):6112-6124. (PMID: 31416644)
Cell. 2020 Jul 9;182(1):73-84.e16. (PMID: 32425270)
Nature. 2021 Sep;597(7874):97-102. (PMID: 34261126)
Science. 2020 May 8;368(6491):630-633. (PMID: 32245784)
J Mol Biol. 1990 Apr 20;212(4):737-61. (PMID: 2329580)
Biochemistry. 2005 Sep 20;44(37):12471-9. (PMID: 16156659)
J Exp Med. 2022 Mar 7;219(3):. (PMID: 35230385)
Front Immunol. 2013 Oct 08;4:302. (PMID: 24115948)
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6849-E6858. (PMID: 27791117)
Cell. 2020 Feb 6;180(3):471-489.e22. (PMID: 32004464)
mBio. 2016 Feb 23;7(1):e02154-15. (PMID: 26908579)
PLoS Pathog. 2010 Sep 02;6(9):e1001081. (PMID: 20824086)
Nat Struct Mol Biol. 2019 Dec;26(12):1167-1175. (PMID: 31792452)
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9619-24. (PMID: 21586636)
Cell Host Microbe. 2018 Oct 10;24(4):579-592.e4. (PMID: 30308160)
Science. 2000 Mar 10;287(5459):1816-20. (PMID: 10710308)
Nat Commun. 2019 May 8;10(1):2105. (PMID: 31068578)
Nat Rev Immunol. 2022 Sep 27;:. (PMID: 36168054)
Science. 2020 Aug 7;369(6504):650-655. (PMID: 32571838)
Nature. 2020 Aug;584(7821):450-456. (PMID: 32698192)
Cell. 2020 Apr 16;181(2):281-292.e6. (PMID: 32155444)
Cell. 2016 Jan 14;164(1-2):258-268. (PMID: 26771495)
Curr Top Microbiol Immunol. 2013;372:83-104. (PMID: 24362685)
PLoS Comput Biol. 2012;8(12):e1002829. (PMID: 23300419)
J Biol Chem. 2015 Oct 30;290(44):26457-70. (PMID: 26296891)
Nature. 2021 Aug;596(7873):583-589. (PMID: 34265844)
J Virol. 2010 Dec;84(23):12236-44. (PMID: 20881049)
Cell Rep. 2020 Apr 28;31(4):107583. (PMID: 32348769)
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11157-11162. (PMID: 29073020)
Trends Biotechnol. 2008 Apr;26(4):190-200. (PMID: 18291542)
Nature. 2008 Jul 10;454(7201):177-82. (PMID: 18615077)
Cell Host Microbe. 2017 Aug 9;22(2):193-206. (PMID: 28799905)
Science. 2020 Nov 20;370(6519):950-957. (PMID: 32972994)
Nature. 1994 Sep 1;371(6492):37-43. (PMID: 8072525)
Science. 2020 Sep 18;369(6510):1505-1509. (PMID: 32703908)
Cell Host Microbe. 2019 Jun 12;25(6):827-835.e6. (PMID: 31104946)
Cell. 2018 Mar 8;172(6):1319-1334. (PMID: 29522750)
PLoS Biol. 2020 Feb 10;18(2):e3000626. (PMID: 32040508)
Nucleic Acids Res. 2019 Jan 8;47(D1):D339-D343. (PMID: 30357391)
Rapid Commun Mass Spectrom. 2009 Mar;23(5):639-47. (PMID: 19170039)
Elife. 2022 Mar 03;11:. (PMID: 35238773)
PLoS Comput Biol. 2020 Feb 7;16(2):e1007339. (PMID: 32032348)
Nat Struct Mol Biol. 2020 Oct;27(10):925-933. (PMID: 32699321)
Elife. 2021 Jan 13;10:. (PMID: 33438580)
mBio. 2022 Apr 26;13(2):e0182521. (PMID: 35323042)
Cell Rep. 2021 Apr 13;35(2):108984. (PMID: 33852862)
BioDrugs. 2007;21(3):145-56. (PMID: 17516710)
PLoS Biol. 2019 Feb 4;17(2):e3000139. (PMID: 30716060)
Nat Commun. 2017 Apr 10;8:15092. (PMID: 28393837)
J Mol Model. 2009 Sep;15(9):1093-108. (PMID: 19234730)
Cell. 2019 May 16;177(5):1086-1088. (PMID: 31100263)
Cell. 2018 Aug 9;174(4):938-952.e13. (PMID: 30096313)
Cell. 2019 May 16;177(5):1136-1152.e18. (PMID: 31100268)
Cell. 2020 Aug 20;182(4):828-842.e16. (PMID: 32645326)
Cell. 2020 Nov 12;183(4):1024-1042.e21. (PMID: 32991844)
Immunity. 2018 Aug 21;49(2):288-300.e8. (PMID: 30097292)
Proc Natl Acad Sci U S A. 1982 Feb;79(4):968-72. (PMID: 6951181)
Cell Rep. 2020 Apr 7;31(1):107488. (PMID: 32268107)
Front Psychol. 2019 May 21;10:1089. (PMID: 31231264)
Cell. 2019 Feb 21;176(5):1026-1039.e15. (PMID: 30712865)
Cell. 2021 Apr 29;184(9):2332-2347.e16. (PMID: 33761326)
Science. 2013 Nov 1;342(6158):592-8. (PMID: 24179220)
BMC Bioinformatics. 2008 Dec 02;9:514. (PMID: 19055730)
Grant Information:
U19 AI117905 United States AI NIAID NIH HHS
Substance Nomenclature:
0 (Antibodies, Monoclonal)
0 (Epitopes)
0 (Antibodies, Neutralizing)
0 (Antibodies, Viral)
Entry Date(s):
Date Created: 20221208 Date Completed: 20221221 Latest Revision: 20230704
Update Code:
20240104
PubMed Central ID:
PMC9762601
DOI:
10.1371/journal.pcbi.1010230
PMID:
36477260
Czasopismo naukowe
Antibody epitope mapping of viral proteins plays a vital role in understanding immune system mechanisms of protection. In the case of class I viral fusion proteins, recent advances in cryo-electron microscopy and protein stabilization techniques have highlighted the importance of cryptic or 'alternative' conformations that expose epitopes targeted by potent neutralizing antibodies. Thorough epitope mapping of such metastable conformations is difficult but is critical for understanding sites of vulnerability in class I fusion proteins that occur as transient conformational states during viral attachment and fusion. We introduce a novel method Accelerated class I fusion protein Epitope Mapping (AxIEM) that accounts for fusion protein flexibility to improve out-of-sample prediction of discontinuous antibody epitopes. Harnessing data from previous experimental epitope mapping efforts of several class I fusion proteins, we demonstrate that accuracy of epitope prediction depends on residue environment and allows for the prediction of conformation-dependent antibody target residues. We also show that AxIEM can identify common epitopes and provide structural insights for the development and rational design of vaccines.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2022 Fischer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies