Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Fear stress promotes glioma progression through inhibition of ferroptosis by enhancing FSP1 stability.

Tytuł:
Fear stress promotes glioma progression through inhibition of ferroptosis by enhancing FSP1 stability.
Autorzy:
Bu C; Department of Medical Psychology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China.
Hu S; Department of Medical Records, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China.
Yu J; Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, People's Republic of China.
Li N; Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, People's Republic of China.
Gu J; Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, People's Republic of China.
Sheng Z; Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, People's Republic of China.
Yan Z; Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, People's Republic of China.
Bu X; Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, 450003, Zhengzhou, People's Republic of China. .
Źródło:
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico [Clin Transl Oncol] 2023 May; Vol. 25 (5), pp. 1378-1388. Date of Electronic Publication: 2022 Dec 09.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2010- >: Milan : Springer Italia
Original Publication: Barcelona, Spain : Doyma, c2005-
MeSH Terms:
Fear*/physiology
Fear*/psychology
Ferroptosis*/genetics
Ferroptosis*/physiology
Glioma*/genetics
Glioma*/psychology
Stress, Psychological*/etiology
Stress, Psychological*/genetics
Stress, Psychological*/psychology
Animals ; Humans ; Mice ; Cell Line, Tumor ; Depression/etiology ; Depression/genetics ; Depression/psychology ; Disease Models, Animal ; Gene Expression ; Methyltransferases/genetics ; Mice, Nude ; RNA, Messenger ; Up-Regulation/genetics
References:
Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol. 2016;18:v1–75. (PMID: 10.1093/neuonc/now207284758098483569)
Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710. (PMID: 10.1101/gad.159670717974913)
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66. (PMID: 10.1016/S1470-2045(09)70025-719269895)
Reardon DA, Wen PY. Glioma in 2014: Unravelling tumour heterogeneity—implications for therapy. Nat Rev Clin Oncol. 2015;12:69–70. (PMID: 10.1038/nrclinonc.2014.22325560529)
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71:3971–5. (PMID: 10.1073/pnas.71.10.39714372599434308)
Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell. 1975;4:379–86. (PMID: 10.1016/0092-8674(75)90158-0164293)
Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112: 108613. (PMID: 10.1016/j.biopha.2019.10861330784918)
Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519:482–5. (PMID: 10.1038/nature14281257999984475635)
Chen J, Fang X, Zhong P, Song Z, Hu X. N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction. RNA Biol. 2019;16:991–1000. (PMID: 10.1080/15476286.2019.1620060311071516602412)
Zhao W, Qi X, Liu L, Ma S, Liu J, Wu J. Epigenetic regulation of m6A modifications in human cancer. Mol Ther Nucleic Acids. 2020;19:405–12. (PMID: 10.1016/j.omtn.2019.11.02231887551)
Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18:110. (PMID: 10.1186/s12943-019-1036-9312289406588935)
Xu D, Shao W, Jiang Y, Wang X, Liu Y, Liu X. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol Rep. 2017;38:2285–92. (PMID: 10.3892/or.2017.590428849183)
Nishizawa Y, Konno M, Asai A, Koseki J, Kawamoto K, Miyoshi N, et al. Oncogene c-Myc promotes epitranscriptome m(6)A reader YTHDF1 expression in colorectal cancer. Oncotarget. 2017;9:7476–86. (PMID: 10.18632/oncotarget.23554294841255800917)
Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF, et al. Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis initiation. Cell Res. 2017;27:1100–14. (PMID: 10.1038/cr.2017.100288093925587845)
Zhuang M, Li X, Zhu J, Zhang J, Niu F, Liang F, et al. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res. 2019;47:4765–77. (PMID: 10.1093/nar/gkz157308430716511866)
Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V, et al. Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 2018;37:522–33. (PMID: 10.1038/onc.2017.35128991227)
Spiegel D, Bloom JR, Kraemer HC, Gottheil E. Effect of psychosocial treatment on survival of patients with metastatic breast cancer. Lancet. 1989;2:888–91. (PMID: 10.1016/S0140-6736(89)91551-12571815)
Chida Y, Hamer M, Wardle J, Steptoe A. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol. 2008;5:466–75. (PMID: 10.1038/ncponc113418493231)
Williams JB, Pang D, Delgado B, Kocherginsky M, Tretiakova M, Krausz T, et al. A model of gene-environment interaction reveals altered mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev Res (Phila). 2009;2:850–61. (PMID: 10.1158/1940-6207.CAPR-08-023819789294)
Nilsson MB, Sun H, Diao L, Tong P, Liu D, Li L, et al. Stress hormones promote EGFR inhibitor resistance in NSCLC: implications for combinations with β-blockers. Sci Transl Med. 2017;9:eaao4307. (PMID: 10.1126/scitranslmed.aao4307291182625870120)
Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12:939–44. (PMID: 10.1038/nm144716862152)
Kim-Fuchs C, Le CP, Pimentel MA, Shackleford D, Ferrari D, Angst E, et al. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav Immun. 2014;40:40–7. (PMID: 10.1016/j.bbi.2014.02.019246504494102665)
Jiang L, Zhou Q, Mu K, Xie H, Zhu Y, Zhu W, et al. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials. 2013;34:7418–28. (PMID: 10.1016/j.biomaterials.2013.05.07823810255)
Li M, Xu H. Fear stress enhanced xenograft pancreatic tumor growth through activating epithelial-mesenchymal transition. Pancreatology. 2019;19:377–82. (PMID: 10.1016/j.pan.2019.01.00230733163)
Bai M, Zhang L, Zhu X, Zhang Y, Zhang S, Xue L. Comparison of depressive behaviors induced by three stress paradigms in rats. Physiol Behav. 2014;131:81–6. (PMID: 10.1016/j.physbeh.2014.04.01924747276)
Altmüller F, Pothula S, Annamneedi A, Nakhaei-Rad S, Montenegro-Venegas C, Pina-Fernández E, et al. Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy. PLoS Genet. 2017;13: e1006684. (PMID: 10.1371/journal.pgen.1006684283464935386306)
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–8. (PMID: 10.1038/s41586-019-1707-031634899)
Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45. (PMID: 10.1016/j.molcel.2016.03.021271177024860043)
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79. (PMID: 10.1038/cdd.2015.158267944435072448)
Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D. Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Dig Dis Sci. 2021;66:483–92. (PMID: 10.1007/s10620-020-06225-232219613)
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161:1388–99. (PMID: 10.1016/j.cell.2015.05.014260464404825696)
Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5:617–25. (PMID: 10.1016/S1470-2045(04)01597-915465465)
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3:1233–47. (PMID: 94096161369564)
Li D, Cai L, Meng R, Feng Z, Xu Q. METTL3 modulates osteoclast differentiation and function by controlling RNA stability and nuclear export. Int J Mol Sci. 2020;21:1660. (PMID: 10.3390/ijms21051660321212897084668)
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. (PMID: 10.1016/j.cell.2012.03.042226329703367386)
Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 2018;8:992. (PMID: 10.3389/fphar.2017.00992293753875770584)
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 2019;23:4900–12. (PMID: 10.1111/jcmm.14511312325226653007)
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92. (PMID: 10.1038/s41586-019-1705-2316349006883167)
Grant Information:
No.2019004 Education Development Foundation of Henan University; No. 192102310126 Key Scientific and Technological Projects in Henan Province
Contributed Indexing:
Keywords: FSP1and METTL3; Fear stress; Ferroptosis; Glioma; m6A
Substance Nomenclature:
0 (ferroptosis suppressor protein 1, human)
EC 2.1.1.- (Methyltransferases)
EC 2.1.1.62 (METTL3 protein, human)
0 (RNA, Messenger)
Entry Date(s):
Date Created: 20221209 Date Completed: 20230426 Latest Revision: 20231213
Update Code:
20240104
DOI:
10.1007/s12094-022-03032-1
PMID:
36484954
Czasopismo naukowe
Purpose: Patients diagnosed with cancer often suffer from emotional stressors, such as anxiety, depression, and fear of death. However, whether fear stress could influence the glioma progression is still unclear.
Methods: Xenograft glioma animal models were established in nude mice. Tumor-bearing mice were subjected to fear stress by living closely with cats and then their depressive behaviors were measured using an open field test. Hematoxylin and eosin staining, the TUNEL staining and immunochemical staining were used to detect the histopathological changes of tumor tissues. Gene expression profiling was used to screen the aberrant gene expression. Methylated RNA immunoprecipitation was used to identify the RNA m 6 A level. Gene expression was measured by western blot and real-time PCR, respectively.
Results: We found that fear stress promoted glioma tumor progression in mice. Fear stress-induced upregulation of METTL3 and FSP1, increased m 6 A level of glioma tumor tissues, and inhibited ferroptosis in glioma progression, which were reversed by knockdown of METTL3 and FSP1 in vivo. In addition, we found that when iFSP1 (a ferroptosis inducer by targeting inhibition of FSP1) was introduced to glioma cells, the cells viability of glioma significantly was decreased and ferroptosis was enhanced in glioma cells.
Conclusions: Fear stress-induced upregulation of METTL3 stabilized FSP1 mRNA by m 6 A modification, leading to tumor progression through inhibition of ferroptosis. Our study provides a new understanding of psychological effects on glioma development, and new insights for glioma therapy.
(© 2022. The Author(s), under exclusive licence to Federación de Sociedades Españolas de Oncología (FESEO).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies