Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Draft genome of the medicinal tea tree Melaleuca alternifolia.

Tytuł:
Draft genome of the medicinal tea tree Melaleuca alternifolia.
Autorzy:
Zhang X; Guangxi Forestry Research Institute, YongWu Road 23, Xixiangtang District, Nanning, 530002, Guangxi, China.
Chen S; State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China.
Zhang Y; Guangxi Forestry Research Institute, YongWu Road 23, Xixiangtang District, Nanning, 530002, Guangxi, China.
Xiao Y; Guangxi Forestry Research Institute, YongWu Road 23, Xixiangtang District, Nanning, 530002, Guangxi, China.
Qin Y; Guangxi Forestry Research Institute, YongWu Road 23, Xixiangtang District, Nanning, 530002, Guangxi, China.
Li Q; State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China.
Liu L; State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China.
Liu B; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, China.
Chai L; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, China.
Yang H; State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China. .
Liu H; Guangxi Forestry Research Institute, YongWu Road 23, Xixiangtang District, Nanning, 530002, Guangxi, China. hailon_.
Źródło:
Molecular biology reports [Mol Biol Rep] 2023 Feb; Vol. 50 (2), pp. 1545-1552. Date of Electronic Publication: 2022 Dec 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Dordrecht, Boston, Reidel.
MeSH Terms:
Tea Tree Oil*
Melaleuca*/genetics
Oils, Volatile*
Humans ; Trees ; Teas, Medicinal
References:
Wu ZY, Raven PH (2013) Flora of China. Science Press: Beijing, China & Missouri Botanical Garden Press, St. Louis, MO, USA, p 321.
Zhang X, Liang G, Yan Y, Yu Y, Yang G, Yang T (2000) Rapid propagation and polyploid induction in Melaleuca alternifolia. J Southwest Agric Univ 22(6):507–509.
Chidi F, Bouhoudan A, Khaddor M (2020) Antifungal effect of the tea tree essential oil (Melaleuca alternifolia) against Penicillium griseofulvum and Penicillium verrucosum. J King Saud Univ Sci 32(3):2041–2045. (PMID: 10.1016/j.jksus.2020.02.012)
Yadav E, Kumar S, Mahant S, Khatkar S, Rao R (2016) Tea tree oil: a promising essential oil. J Essent Oil Res 29(3):201–213. (PMID: 10.1080/10412905.2016.1232665)
Redondo-Blanco S, Fernandez J, Lopez-Ibanez S, Miguelez EM, Villar CJ, Lombo F (2020) Plant phytochemicals in food preservation: antifungal bioactivity: a review. J Food Prot 83(1):163–171. (PMID: 10.4315/0362-028X.JFP-19-163)
Lee JY, Lee J, Ko SW, Son BC, Lee JH, Kim CS et al (2020) Fabrication of antibacterial nanofibrous membrane infused with essential oil extracted from tea tree for packaging applications. Polymers (Basel) 12(1):125. (PMID: 10.3390/polym12010125)
Bustos-Segura C, Padovan A, Kainer D, Foley WJ, Külheim C (2017) Transcriptome analysis of terpene chemotypes of Melaleuca alternifolia across different tissues. Plant Cell Environ 40(10):2406–2425. (PMID: 10.1111/pce.13048)
Felipe LO, Junior W, Araujo KC, Fabrino DL (2018) Lactoferrin, chitosan and Melaleuca alternifolia-natural products that show promise in candidiasis treatment. Braz J Microbiol 49(2):212–219. (PMID: 10.1016/j.bjm.2017.05.008)
Sharifi-Rad J, Salehi B, Varoni EM, Sharopov F, Yousaf Z, Ayatollahi SA et al (2017) Plants of the Melaleuca genus as antimicrobial agents: from farm to pharmacy. Phytother Res 31(10):1475–1494. (PMID: 10.1002/ptr.5880)
Hong Y, Huang X, Li C, Ruan X, Wang Z, Su Y et al (2020) Genome survey sequencing of in vivo mother plant and in vitro plantlets of Mikania cordata. Plants 9(12):1665. (PMID: 10.3390/plants9121665)
Calvert J, Baten A, Butler J, Barkla B, Shepherd M (2017) Terpene synthase genes in Melaleuca alternifolia: comparative analysis of lineage-specific subfamily variation within Myrtaceae. Plant Syst Evol 304(1):111–121. (PMID: 10.1007/s00606-017-1454-3)
Wang W, Das A, Kainer D, Schalamun M, Morales-Suarez A, Schwessinger B et al (2020) The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies. Gigascience 9(1):1–12. (PMID: 10.1093/gigascience/giz160)
Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J et al (2014) The genome of Eucalyptus grandis. Nature 510(7505):356–362. (PMID: 10.1038/nature13308)
Izuno A, Hatakeyama M, Nishiyama T, Tamaki I, Shimizu-Inatsugi R, Sasaki R et al (2016) Genome sequencing of Metrosideros polymorpha (Myrtaceae), a dominant species in various habitats in the Hawaiian Islands with remarkable phenotypic variations. J Plant Res 129(4):727–736. (PMID: 10.1007/s10265-016-0822-3)
Thrimawithana AH, Jones D, Hilario E, Grierson E, Ngo HM, Liachko I et al (2019) A whole genome assembly of Leptospermum scoparium (Myrtaceae) for mānuka research. N Z J Crop Hortic Sci 47(4):233–260. (PMID: 10.1080/01140671.2019.1657911)
Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S et al (2018) SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and prepro-cessing of high-throughput sequencing data. Gigascience 7:1–6. (PMID: 10.1093/gigascience/gix120)
Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6):764–770. (PMID: 10.1093/bioinformatics/btr011)
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18. (PMID: 10.1186/2047-217X-1-18)
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. (PMID: 10.1093/bioinformatics/btv351)
Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Meth 12(1):59–60. (PMID: 10.1038/nmeth.3176)
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server issue):182–5. (PMID: 10.1093/nar/gkm321)
Flynna JM, Hubleyb R, Gouberta C, Rosenb J, Clarka AG, Feschottea C et al (2020) RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A 1:9451–9457. (PMID: 10.1073/pnas.1921046117)
Tempel S (2012) Using and understanding RepeatMasker. Methods Mol Biol 859:29–51. (PMID: 10.1007/978-1-61779-603-6_2)
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–W439. (PMID: 10.1093/nar/gkl200)
Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics (Oxford) 33(16):2583–2585. (PMID: 10.1093/bioinformatics/btx198)
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang PM et al (2016) iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9(12):1667–1670. (PMID: 10.1016/j.molp.2016.09.014)
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115. (PMID: 10.1126/science.1178534)
Camillo J, Leao AP, Alves AA, Formighieri EF, Azevedo AL, Nunes JD et al (2014) Reassessment of the genome size in Elaeis guineensis and Elaeis oleifera, and its interspecific hybrid. Genom Insights 7:13–22.
Wu Y, Xiao F, Xu H, Zhang T, Jiang X (2014) Genome survey in Cinnamomum camphora L. Presl J Plant Genet Resour 15(1):149–152.
Baskorowati L, Moncur MW, Doran JC, Kanowski PJ (2010) Reproductive biology of Melaleuca alternifolia (Myrtaceae) 1. Floral biology. Aust J Bot 58:373–383. (PMID: 10.1071/BT10035)
Baskorowati L, Moncur MW, Cunningham SA, Doran JC, KanowskiA PJ (2010) Reproductive biology of Melaleuca alternifolia (Myrtaceae) 2. Incompatibility and pollen transfer in relation to the breeding system. Aust J Bot 58:384–391. (PMID: 10.1071/BT10036)
ButcherBell PJC, Moran GF (1992) Patterns of genetic diversity and nature of the breeding system in Melaleuca alternifolia (Myrtaceae). Aust J Bot 40:365–375. (PMID: 10.1071/BT9920365)
Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L et al (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci U S A. 115(18):4151–8. (PMID: 10.1073/pnas.1719622115)
Wei Y, Jing W, Hua D, Youxiang Z, Mingming Z, Dingjin H (2013) Characteristic analysis and application of microsatellites from EST sequence of Camellia sinensis (in Chinese). Hubei Agric Sci 52(24):6178–6181.
Grant Information:
GuiCaiSheHan [2018]112 Department of Human Resources and Social Security of 325 Guangxi Zhuang Autonomous Region, China; 202002 Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards Open Project; Gui Ke AD18281083 Guangxi Science and Technology Project; Gui Ke AB18221058 Guangxi Science and Technology Project
Contributed Indexing:
Keywords: De novo assembly; Genome annotation; Genome sequencing; Melaleuca alternifolia; Tea tree oil; Whole-genome shotgun sequencing
Substance Nomenclature:
68647-73-4 (Tea Tree Oil)
0 (Oils, Volatile)
Entry Date(s):
Date Created: 20221213 Date Completed: 20230202 Latest Revision: 20230202
Update Code:
20240105
DOI:
10.1007/s11033-022-08157-8
PMID:
36513867
Czasopismo naukowe
Background: Melaleuca alternifolia is a commercially important medicinal tea tree native to Australia. Tea tree oil, the essential oil distilled from its branches and leaves, has broad-spectrum germicidal activity and is highly valued in the pharmaceutical and cosmetic industries. Thus, the study of genome, which can provide reference for the investigation of genes involved in terpinen-4-ol biosynthesis, is quite crucial for improving the productivity of Tea tree oil.
Methods and Results: In our study, the next-generation sequencing was used to investigate the whole genome of Melaleuca alternifolia. About 114 Gb high quality sequence data were obtained and assembled into 1,838,159 scafolds with an N50 length of 1021 bp. The assembled genome size is about 595 Mb, twice of that predicted by flow cytometer (300 Mb) and k-mer analysis (345 Mb). Benchmarking Universal Single-Copy Orthologs analyses indicated that only 11.3% of the conserved single-copy genes were miss. Repetitive regions cover over 40.43% of the genome. A total of 44,369 protein-coding genes were predicted and annotated against Nr, Swissprot, Refseq, COG, KOG, and KEGG database. Among these genes, 32,909 and 16,241 genes were functionally annotated in Nr and KEGG, respectively. Moreover, 29,411 and 14,435 genes were functionally annotated in COG and KOG. Additionally, 457,661 simple sequence repeats and 1109 transcription factors (TFs) form 67 TF families were identified in the assembled genome.
Conclusion: Our findings provide a draft genome sequencing of M. alternifolia which can act as a reference for the deep sequencing strategies, and are useful for future functional and comparative genomics analyses.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies