Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An inner-outer subcycling algorithm for parallel cardiac electrophysiology simulations.

Tytuł:
An inner-outer subcycling algorithm for parallel cardiac electrophysiology simulations.
Autorzy:
Laudenschlager S; Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA.
Cai XC; Department of Mathematics, University of Macau, Macau, China.
Źródło:
International journal for numerical methods in biomedical engineering [Int J Numer Method Biomed Eng] 2023 Mar; Vol. 39 (3), pp. e3677. Date of Electronic Publication: 2023 Jan 09.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: [Oxford, UK] : Wiley
MeSH Terms:
Electrophysiologic Techniques, Cardiac*
Models, Cardiovascular*
Humans ; Heart/physiology ; Algorithms ; Cardiac Electrophysiology ; Computer Simulation
References:
Srinivasan N, Schilling R. Sudden cardiac death and arrhythmias. Arrhythmia Electrophysiol Rev. 2018;7(2):111-117.
Colli Franzone P, Pavarino LF, Scacchi S. Mathematical Cardiac Electrophysiology. Springer; 2014.
Cooper J, Spiteri R, Mirams G. Cellular cardiac electrophysiology modeling with chaste and CellML. Front Physiol. 2015;5:511.
Mayourian J, Sobie E, Costa K. An introduction to computational modeling of cardiac electrophysiology and arrhythmogenicity. Methods Mol Biol. 2018;1816:17-35.
Krishnamoorthi S, Perotti L, Borgstrom N, et al. Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology. PLoS One. 2014;9:1-29.
Bourgault Y, Pierre C. Comparing the Bidomain and Monodomain Models in Electrocardiology through Convergence Analysis. HAL Archives-ouvertes; 2010.
Plank G, Burton RA, Hales P, et al. Generation of histo-anatomically representative models of the individual heart: tools and application. Philos Trans A: Math Phys Eng Sci. 1896;2009(367):2257-2292.
Richards DF, Glosli JN, Draeger EW, et al. Towards real-time simulation of cardiac electrophysiology in a human heart at high resolution. Comput Methods Biomech Biomed Eng. 2013;16(7):802-805.
MFEM: Modular Finite Element Methods Library. mfem.org. Accessed September 10, 2021.
Falgout R, Yang U. Hypre: a library of high performance preconditioners. ICCS '02. Springer; 2002:632-641.
Arevalo H, Vadakkumpadan F, Guallar E, et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat Commun. 2016;7(11437):1-8.
Strocchi M, Augustin CM, Gsell MAF, et al. A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations. PLoS One. 2020;15(6):1-26.
Pathmanathan P, Bernabeu MO, Bordas R, et al. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog Biophys Mol Biol. 2010;102:136-155.
Colli Franzone P, Pavarino LF. A parallel solver for reaction-diffusion systems in computational electrocardiology. Math Models Methods Appl Sci. 2004;14:883-911.
Munteanu M, Pavarino LF, Scacchi S. A scalable Newton-Krylov-schwarz method for the bidomain reaction-diffusion system. SIAM J Sci Comput. 2009;31:3861-3883.
Plank G, Liebmann M, Weber dos Santos R, Vigmond EJ, Haase G. Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng. 2007;54(4):585-596.
Pavarino LF, Scacchi S. Multilevel additive schwarz preconditioners for the bidomain reaction-diffusion system. SIAM J Sci Comput. 2008;31:420-443.
Murillo M, Cai XC. A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. Numer Linear Algebra Appl. 2004;11:261-277.
Bernabeu MO, Southern J, Wilson N, Strazdins P, Cooper J, Pitt-Francis J. Chaste: a case study of parallelisation of an open source finite-element solver with applications to computational cardiac electrophysiology simulation. Int J High Performance Comput Appl. 2014;28(1):13-32.
Niederer SA, Mitchell L, Smith N, Plank G. Simulating human cardiac electrophysiology on clinical time-scales. Front Physiol. 2011;2:14.
Vázquez M, Arís R, Houzeaux G, Aubry R, Villar P, Garcia-Barnés J. A massively parallel computational electrophysiology model of the heart. Int J Numer Methods Biomed Eng. 2011;27(12):1911-1929.
Niederer SA, Kerfoot E, Benson A, et al. Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos Trans A: Math Phys Eng Sci. 2011;369(1954):4331-4351.
Southern J, Gorman GJ, Piggott MD, Farrell PE, Bernabeu MO, Pitt-Francis J. Anisotropic mesh adaptivity for cardiac electrophysiology. Proc Comput Sci. 2010;1(1):935-944.
Belhamadia Y, Fortin A, Bourgault Y. Towards accurate numerical method for monodomain models using a realistic heart geometry. Math Biosci. 2009;220(2):89-101.
Heidenreich EA, Ferrero JM, Doblare M, Rodríguez JF. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology. Ann Biomed Eng. 2010;38(7):2331-2345.
Qu Z, Garfinkel A. An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans Biomed Eng. 1999;46(9):1166-1168.
Mountris KA, Pueyo E. A dual adaptive explicit time integration algorithm for efficiently solving the cardiac monodomain equation. Int J Numer Methods Biomed Eng. 2021;37(7):e3461.
Gomes JM, Alvarenga A, Campos RS, Rocha BM, da Silva APC, Weber dos Santos R. Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation. IEEE Trans Biomed Eng. 2015;62(2):600-608.
Gomes JM, Oliveira RS, Lobosco M, Weber dos Santos R. Adaptive-step methods for Markov-based membrane models. Commun Nonlinear Sci Numer Simul. 2020;85:85.
Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117:500-544.
ten Tusscher KHWJ, Panfilov A. Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol. 2006;291(3):1088-1100.
Pagani S, Dede L, Manzoni A, Quarteroni A. Data integration for the numerical simulation of cardiac electrophysiology. Pacing Clin Electrophysiol. 2021;44(4):726-736.
Shade JK, Cartoski MJ, Nikolov P, et al. Ventricular arrhythmia risk prediction in repaired tetralogy of Fallot using personalized computational cardiac models. Heart Rhythm. 2020;17(3):408-414.
Crank J, Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc Camb Phil Soc. 1947;43(1):50-67.
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323-1341.
Ungi T, Lasso A, Fichtinger G. Open-source platforms for navigated image-guided interventions. Med Image Anal. 2016;33:181-186.
Edelsbrunner H, Kirkpatrick DG, Seidel R. On the shape of a set of points in the plane. IEEE Trans Inform Theory. 1983;29(4):551-559.
Schroeder W, Martin K, Lorensen B. The Visualization Toolkit. Kitware, Inc; 2006.
Radau P, Lu Y, Connelly K, Paul G, Dick A, Wright GA. Evaluation framework for algorithms segmenting short axis cardiac MRI MIDAS J. Cardiac MR Left Ventricle Segmentation Challenge. 2009;49.
Valette S, Chassery JM, Prost R. Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans Vis Comput Graph. 2008;14(2):369-381.
Hang S. TetGen, A Delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw. 2015;41(2):11.
Frey P. MEDIT: an Interactive Mesh Visualization Software. Technical Report. Institut National de Recherche en Informatique et en Automatique; 2001.
Rush S, Larsen H. A practical algorithm for solving dynamic membrane equations. IEEE Trans Biomed Eng. 1978;25(4):389-392.
Marsh ME, Torabi Ziaratgahi S, Spiteri RJ. The secrets to the success of the Rush-Larsen method and its generalizations. IEEE Trans Biomed Eng. 2012;59(9):2506-2515.
Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand. 1952;49:409-436.
Baker AH, Falgout RD, Kolev TV, Yang UM. Multigrid smoothers for ultraparallel computing. SIAM J Sci Comput. 2011;33(5):2864-2887.
De Sterck H, Yang UM, Heys JJ. Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J Matrix Anal Appl. 2005;27(4):1019-1039.
De Sterck H, Falgout RD, Nolting JW, Yang UM. Distance-two interpolation for parallel algebraic multigrid. Numer Linear Algebra Appl. 2008;15(2-3):115-139.
Cardonne-Noott L, Bueno-Orovio A, Mincholé A, Zemzemi N, Rodriguez B. Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions. Europace. 2016;18:iv4-iv15.
O'Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol. 2011;7(5):e1002061.
Contributed Indexing:
Keywords: cardiac electrophysiology; finite element on unstructured meshes; parallel processing; patient-specific cardiac geometry; time integration with subcycling
Entry Date(s):
Date Created: 20221227 Date Completed: 20230315 Latest Revision: 20230316
Update Code:
20240105
DOI:
10.1002/cnm.3677
PMID:
36573938
Czasopismo naukowe
This paper explores cardiac electrophysiological simulations of the monodomain equations and introduces a novel subcycling time integration algorithm to exploit the structure of the ionic model. The aim of this work is to improve upon the efficiency of parallel cardiac monodomain simulations by using our subcycling algorithm in the computation of the ionic model to handle the local sharp changes of the solution. This will reduce the turnaround time for the simulation of basic cardiac electrical function on both idealized and patient-specific geometry. Numerical experiments show that the proposed approach is accurate and also has close to linear parallel scalability on a computer with more than 1000 processor cores. Ultimately, the reduction in simulation time can be beneficial in clinical applications, where multiple simulations are often required to tune a model to match clinical measurements.
(© 2022 John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies