Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

bta-miR-2904 inhibits bovine viral diarrhea virus replication by targeting viral-infection-induced autophagy via ATG13.

Tytuł:
bta-miR-2904 inhibits bovine viral diarrhea virus replication by targeting viral-infection-induced autophagy via ATG13.
Autorzy:
Yang N; College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China.
Hu N; College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China.
Zhang J; College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China.
Yi J; College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China.
Wang Z; College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China.
Wang Y; College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China.
Wu P; College of Life Science, Shihezi University, 832003, Shihezi, Xinjiang, China.
Chen C; College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China. .
Źródło:
Archives of virology [Arch Virol] 2022 Dec 28; Vol. 168 (1), pp. 11. Date of Electronic Publication: 2022 Dec 28.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Wien, New York, Springer-Verlag.
MeSH Terms:
Diarrhea Viruses, Bovine Viral*/physiology
MicroRNAs*/genetics
MicroRNAs*/metabolism
Virus Diseases*
Diarrhea Virus 2, Bovine Viral*/genetics
Diarrhea Virus 1, Bovine Viral*/genetics
Animals ; Cattle ; Cell Line ; Virus Replication/genetics ; Transcription Factors ; Autophagy/genetics ; Diarrhea
References:
ZhouY, Ren Y, Cong Y, Mu Y, Yin R, Ding Z (2017) Autophagy induced by bovine viral diarrhea virus infection counteracts apoptosis and innate immune activation. Arch Virol 162:3103–3118. doi: https://doi.org/10.1007/s00705-017-3482-2. (PMID: 10.1007/s00705-017-3482-2)
Shi H, Fu Q, Li S, Hu X, Tian R, Yao G, Zhao H, Wang J (2018) Bta-miR-2411 attenuates bovine viral diarrhea virus replication via directly suppressing Pelota protein in Madin-Darby bovine kidney cells. Vet Microbio 215:43–48. doi: https://doi.org/10.1016/j.vetmic.2018.01.002. (PMID: 10.1016/j.vetmic.2018.01.002)
Olafson P, Maccallum AD, Fox FH (1946) An apparently new transmissible disease of cattle. Cornell Vet 36:205–213.
Lee KM, Gillespie JH (1957) Propagation of virus diahea virus of cattle in tissue culture. Am J Vet Res 18:952–953. doi: https://doi.org/10.1080/17449855.2012.754243. (PMID: 10.1080/17449855.2012.754243)
Ridpath JF, Bolin SR, Dubovi EJ (1994) Segregation of bovine viral diarrhea virus into genotypes. Virology 205:66–74. doi: https://doi.org/10.1006/viro.1994.1620. (PMID: 10.1006/viro.1994.1620)
Fulton RW, Ridpath JF, Confer AW, Saliki JT, Burge LJ, Payton ME (2003) Bovine viral diarrhoea virus antigenic diversity: impact on disease and vaccination programmes. Biologicals 31:89–95. doi: https://doi.org/10.1016/S1045-1056(03)00021-6. (PMID: 10.1016/S1045-1056(03)00021-6)
Zheng Y, Gu S, Li X, Tan J, Liu S, Jiang Y, Zhang C, Gao L, Yang H (2017) Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis 8:e2577–e2577. doi: https://doi.org/10.1038/cddis.2017.7. (PMID: 10.1038/cddis.2017.7)
Lackner T, Muller A, Pankraz A, Becher P, Thiel HJ, Gorbalenya AE, Tautz N (2004) Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol 78:10765–10775. doi: https://doi.org/10.1128/JVI.78.19.10765-10775.2004. (PMID: 10.1128/JVI.78.19.10765-10775.2004)
Suda Y, Murakami S, Horimoto T (2019) Bovine viral diarrhea virus non-structural protein NS4B induces autophagosomes in bovine kidney cells. Arch Virol 164:255–260. doi: https://doi.org/10.1007/s00705-018-4045-x. (PMID: 10.1007/s00705-018-4045-x)
Jing K, Lim K (2012) Why is autophagy important in human diseases? Exp Mol Med 44:69–72. doi: https://doi.org/10.3858/emm.2012.44.2.028. (PMID: 10.3858/emm.2012.44.2.028)
Hu Z, Cai M, Zhang Y, Tao L, Guo R (2020) miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway. Cell Cycle 19:193–206. doi: https://doi.org/10.1080/15384101.2019.1704537. (PMID: 10.1080/15384101.2019.1704537)
Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H (2008) Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82:9143–9153. doi: https://doi.org/10.1128/JVI.00641-08. (PMID: 10.1128/JVI.00641-08)
Yordy B, Tal C, Hayashi K, Arojo O, Iwasaki A (2013) Autophagy and selective deployment of Atg proteins in antiviral defense. Int Immunol 25:1–10. doi: https://doi.org/10.1093/intimm/dxs101. (PMID: 10.1093/intimm/dxs101)
Nie T, Zhu L, Yang Q (2021) The Classification and Basic Processes of Autophagy. Adv Exp Mede Biol 1208:3–16. doi: https://doi.org/10.1007/978-981-16-2830-6_1. (PMID: 10.1007/978-981-16-2830-6_1)
Zhu Y, Yang T, Duan J, Mu N, Zhang T (2019) MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging 11:1089. doi: https://doi.org/10.18632/aging.101766. (PMID: 10.18632/aging.101766)
Hwang W, Mendell T (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Brit J Cancer 96:R40–R44. doi: https://doi.org/10.1038/sj.bjc.6603023. (PMID: 10.1038/sj.bjc.6603023)
Fu Q, Shi H, Ni W, Shi M, Meng L, Zhang H, Ren Y, Guo F, Wang P, Qiao J, Jia B, Chen C (2015) Lentivirus-mediated Bos taurus bta-miR-29b overexpression interferes with bovine viral diarrhoea virus replication and viral infection-related autophagy by directly targeting ATG14 and ATG9A in Madin–Darby bovine kidney cells. J Gen Virol 96:85–94. doi: https://doi.org/10.1099/vir.0.067140-0. (PMID: 10.1099/vir.0.067140-0)
Reed LJ, Muench H (1938) A simple method of estimating fifty percent end points. Am J Hyg 27:493–497. doi: https://doi.org/10.1093/oxfordjournals.aje.a118408. (PMID: 10.1093/oxfordjournals.aje.a118408)
Luo Y, Zheng S, Wu Q, Wu J, Zhou R, Wang C, Wu Z, Rong X, Huang N, Sun L, Bin J, Liao Y, Shi M, Liao W (2021) Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy 17:4083–4101. doi: https://doi.org/10.1080/15548627.2021.1901204. (PMID: 10.1080/15548627.2021.1901204)
Li Y, Zhou D, Ren Y, Zhang Z, Guo X, Ma M, Xue Z, Lv J, Liu H, Xi Q, Jia L, Zhang L, Liu Y, Zhang Q, Yan J, Da Y, Gao F, Yue J, Yao Z, Zhang R (2019) Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1. Autophagy 15:478–492. doi: https://doi.org/10.1080/15548627.2018.1522467. (PMID: 10.1080/15548627.2018.1522467)
Shrivastava S, Raychoudhuri A, Steele R, Ray R, Ray RB (2011) Knockdown of autophagy enhances the innate immune response in hepatitis C virus–infected hepatocytes. Hepatology 53:406–414. doi: https://doi.org/10.1002/hep.24073. (PMID: 10.1002/hep.24073)
Holt SV, Wyspianska B, Randall KJ, James D, Foster JR, Wilkinson RW (2011) The development of an immunohistochemical method to detect the autophagy-associated protein LC3-II in human tumor xenografts. Toxicol Pathol 39:516–523. doi: https://doi.org/10.1177/0192623310396903. (PMID: 10.1177/0192623310396903)
Mizushima N (2009) Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods Enzymol 452:13–23. doi: https://doi.org/10.1016/S0076-6879(08)03602-1. (PMID: 10.1016/S0076-6879(08)03602-1)
Mareninova Olga A, Jia Wenzhuo G, Sophie R, Holthaus Conner L, Thomas Diana DH, Pimienta Michael D, Dustin L, Gukovskaya Anna S, Groblewski Gukovsky Ilya E (2020) Transgenic expression of GFP-LC3 perturbs autophagy in exocrine pancreas and acute pancreatitis responses in mice. Autophagy 16:2084–2097. doi: https://doi.org/10.1080/15548627.2020.1715047. (PMID: 10.1080/15548627.2020.1715047)
Bravo-San Pedro JM, Pietrocola F, Sica V, Izzo V, Sauvat A, Kepp O, Maiuri MC, Kroemer G, Galluzzi L (2017) High-Throughput Quantification of GFP-LC3 Dots by Automated Fluorescence Microscopy. Methods Enzymol 587:71–86. doi: https://doi.org/10.1016/bs.mie.2016.10.022. (PMID: 10.1016/bs.mie.2016.10.022)
Ni H-M, Abigail B, Ann W, Jones L, Kellyann W, Steven YXiao-Ming, Ding Wen-Xing (2011) Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7:188–204. doi: https://doi.org/10.4161/auto.7.2.14181. (PMID: 10.4161/auto.7.2.14181)
Eskelinen EL, Reggiori F, Baba M, Kovács AL, Seglen PO (2011) Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy 7:935–956. doi: https://doi.org/10.4161/auto.7.9.15760. (PMID: 10.4161/auto.7.9.15760)
Jordan TX, Randall G (2012) Manipulation or capitulation: virus interactions with autophagy. Microbes Infect 14:126–139. (PMID: 10.1016/j.micinf.2011.09.007)
Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730. doi: https://doi.org/10.1038/nrd3802. (PMID: 10.1038/nrd3802)
Kuballa P, Nolte WM, Castoreno AB, Xavier RJ (2012) Autophagy and the immune system. Annu Rev Immunol 30:611–646. doi: https://doi.org/10.1146/annurev-immunol-020711-074948. (PMID: 10.1146/annurev-immunol-020711-074948)
Shoji -KS, Levine B (2009) Autophagy, antiviral immunity, and viral countermeasures. BBA-Mol Cell Res 1793:1478–1484.
Orvedahl A, MacPherson S, Sumpter JR, Tallóczy Z, Zou Z, Levine B (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115–127. doi: https://doi.org/10.1016/j.chom.2010.01.007. (PMID: 10.1016/j.chom.2010.01.007)
Shelly S, Lukinova N, Bambina S, Berman A, Cherry S (2009) Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30:588–598. doi: https://doi.org/10.1016/j.immuni.2009.02.009. (PMID: 10.1016/j.immuni.2009.02.009)
Ke PY, Chen L (2011) Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J Clin Invest 121:37–56. doi: https://doi.org/10.1172/JCI41474. (PMID: 10.1172/JCI41474)
Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang S, Lin Y, Yeh T, Liu C, Liu H (2008) Autophagic machinery activated by dengue virus enhances virus replication. Virology 374:240–248. doi: https://doi.org/10.1016/j.virol.2008.02.016. (PMID: 10.1016/j.virol.2008.02.016)
Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, Ge J, Wang S, Goldman SA, Zlokovic BV, Zhao Z, Jung JU (2016) Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19:663–671. doi: https://doi.org/10.1016/j.stem.2016.07.019. (PMID: 10.1016/j.stem.2016.07.019)
Jin R, Zhu W, Cao B, Chen R, Jin H, Liu Y, Wang S, Wang W, Xiao G (2013) Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS ONE 8:e52909. doi: https://doi.org/10.1371/journal.pone.0052909. (PMID: 10.1371/journal.pone.0052909)
Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, Dong X, Liu W, Luo Y, Liao M, Chen J (2014) Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy 10:93–110. doi: https://doi.org/10.4161/auto.26843. (PMID: 10.4161/auto.26843)
Fu Q, Shi JH, Ren Y, Guo F, Ni W, Qiao J, Chen C (2014) Bovine viral diarrhea virus infection induces autophagy in MDBK cells. J Microbiol 52:619–625. doi: https://doi.org/10.1007/s12275-014-3479-4. (PMID: 10.1007/s12275-014-3479-4)
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce C (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Rre 65:7065–7070. doi: https://doi.org/10.1158/0008-5472.CAN-05-1783. (PMID: 10.1158/0008-5472.CAN-05-1783)
Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. doi: https://doi.org/10.1038/nrg2290. (PMID: 10.1038/nrg2290)
Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3′ UTRs. PLoS ONE 6:e18067. doi: https://doi.org/10.1371/journal.pone.0018067. (PMID: 10.1371/journal.pone.0018067)
Korkmaz G, Le SC, Tekirdag KA, Agami R, Gozuacik D (2012) miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8:165–176. doi: https://doi.org/10.4161/auto.8.2.18351. (PMID: 10.4161/auto.8.2.18351)
Frankel LB, Wen J, Lees M, Høyer HM, Farkas T, Krogh A, Jäättelä M, Lund AH (2011) microRNA-101 is a potent inhibitor of autophagy. Embo J 30:4628–4641. doi: https://doi.org/10.1038/emboj.2011.331. (PMID: 10.1038/emboj.2011.331)
He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu rev genet 43:67–93. doi: https://doi.org/10.1146/annurev-genet-102808-114910. (PMID: 10.1146/annurev-genet-102808-114910)
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena A et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). doi: https://doi.org/10.1016/j.micinf.2011.09.007.
Han B, Chen Y (2014) Non-coding RNAs in autophagy modulation. Chem Life 34:434–441. doi: https://doi.org/10.13488/j.smhx.20140403. (PMID: 10.13488/j.smhx.20140403)
Ge D, Han L, Huang Y, Peng N, Wang C, Jiang Z, Zhao J, Su L, Zhang SL, Zhang Y, Kung HF, Zhao BX, Miao JY (2014) Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy 10:957–971. doi: https://doi.org/10.4161/auto.28363. (PMID: 10.4161/auto.28363)
Grant Information:
2013-179 the Collaborative Innovation Center for the prevention and treatment of high incidence zoonotic infectious diseases in the Western Region; 21322912D the Transformation and Application Demonstration of Rapid Screening Technology Achievements for Important Animal Diseases in Intensive Breeding
Contributed Indexing:
Keywords: ATG13; Autophagy; Bovine viral diarrhea virus; MDBK; miR-2904
Substance Nomenclature:
0 (MicroRNAs)
0 (Transcription Factors)
Entry Date(s):
Date Created: 20221228 Date Completed: 20221230 Latest Revision: 20230103
Update Code:
20240105
DOI:
10.1007/s00705-022-05630-4
PMID:
36576583
Czasopismo naukowe
MicroRNAs (miRNAs) are endogenous small and noncoding RNA molecules (18-25 nt) that can regulate expression of their target genes post-transcriptionally. Previously, using high-throughput sequencing data obtained on a Solexa platform, we found that Bos taurus bta-miR-2904 (miR-2904) was significantly upregulated in Madin-Darby bovine kidney (MDBK) cells infected with bovine viral diarrhea virus (BVDV) strain NADL at 2, 6, and 18 h postinfection (hpi) compared to uninfected MDBK cells. Moreover, miR-2904 overexpression significantly reduced BVDV replication. However, the mechanism by which miR-2904 inhibits viral replication remains unclear. In this study, we used electron microscopy, laser confocal microscopy, dual-luciferase reporter analysis, real-time PCR, and Western blot assays to investigate the effect of the miR-2904 expression on BVDV NADL replication and virus-infection-induced autophagy. The results indicate that miR-2904 inhibits autophagy of MDBK cells by targeting autophagy-related gene 13 (ATG13), and overexpression of miR-2904 inhibited the replication of BVDV NADL.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies