Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Weaving a story: Narrative formation over prolonged time scales engages social cognition and frontoparietal networks.

Tytuł:
Weaving a story: Narrative formation over prolonged time scales engages social cognition and frontoparietal networks.
Autorzy:
Assouline A; Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.; The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel.
Mendelsohn A; Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.; The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel.
Źródło:
The European journal of neuroscience [Eur J Neurosci] 2023 Mar; Vol. 57 (5), pp. 809-823. Date of Electronic Publication: 2023 Jan 18.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
MeSH Terms:
Social Cognition*
Comprehension*/physiology
Humans ; Cognition/physiology ; Memory, Short-Term/physiology ; Magnetic Resonance Imaging ; Brain Mapping
References:
Abu-Akel, A., & Shamay-Tsoory, S. (2011). Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia, 49, 2971-2984. https://doi.org/10.1016/j.neuropsychologia.2011.07.012.
Argyropoulos, G. P. D., Loane, C., Roca-Fernandez, A., Lage-Martinez, C., Gurau, O., Irani, S. R., & Butler, C. R. (2019). Network-wide abnormalities explain memory variability in hippocampal amnesia. eLife, 8, 1-38. https://doi.org/10.7554/eLife.46156.
Arnold Anteraper, S., Guell, X., D'Mello, A., Joshi, N., Whitfield-Gabrieli, S., & Joshi, G. (2019). Disrupted cerebrocerebellar intrinsic functional connectivity in young adults with high-functioning autism spectrum disorder: A data-driven, whole-brain, high-temporal resolution functional magnetic resonance imaging study. Brain Connectivity, 9, 48-59. https://doi.org/10.1089/brain.2018.0581.
Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95, 709-721.e5. https://doi.org/10.1016/j.neuron.2017.06.041.
Baron-Cohen, S. (2001). Theory of mind in normal development and autism. Prisme, 34, 174-183.
Barthes, R. (1982). Introduction to the structural analysis of narratives. In S. Sontag (Ed.). A Barthes reader (pp. 251-295). Hill and Wang.
Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. https://doi.org/10.1038/srep10964.
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37, 90-101. https://doi.org/10.1016/j.neuroimage.2007.04.042.
Ben-Yakov, A., Eshel, N., & Dudai, Y. (2013). Hippocampal immediate poststimulus activity in the encoding of consecutive naturalistic episodes. Journal of Experimental Psychology. General, 142, 1255-1263. https://doi.org/10.1037/a0033558.
Bernhardt, B. C., & Singer, T. (2012). The neural basis of empathy. Annual Review of Neuroscience, 35, 1-23. https://doi.org/10.1146/annurev-neuro-062111-150536.
Briner, S. W., Virtue, S., & Kurby, C. A. (2011). Processing causality in narrative events: Temporal order matters. Discourse Processes, 49, 61-77. https://doi.org/10.1080/0163853X.2011.607952.
Brockmeier, J. (2002). Remembering and forgetting: Narrative as cultural memory. Culture & Psychology, 8, 15-43. https://doi.org/10.1177/1354067X0281002.
Brunet, E., Sarfati, Y., Hardy-Baylé, M.-C., & Decety, J. (2000). A PET Investigation of the Attribution of Intentions with a Nonverbal Task. NeuroImage, 11(2), 157-166. https://doi.org/10.1006/nimg.1999.0525.
Buccino, G., Baumgaertner, A., Colle, L., Buechel, C., Rizzolatti, G., & Binkofski, F. (2007). The neural basis for understanding non-intended actions. NeuroImage, 36, T119-T127. https://doi.org/10.1016/j.neuroimage.2007.03.036.
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1-38. https://doi.org/10.1196/annals.1440.011.
Burns, P., & McCormack, T. (2009). Temporal information and children's and adults' causal inferences. Thinking and Reasoning, 15, 167-196. https://doi.org/10.1080/13546780902743609.
Caffo, B. S., Crainiceanu, C. M., Verduzco, G., Joel, S., Mostofsky, S. H., Bassett, S. S., & Pekar, J. J. (2010). Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer's disease risk. NeuroImage, 51(3),1140-1149. https://doi.org/10.1016/j.neuroimage.2010.02.081.
Caulfield, M. D., Zhu, D. C., McAuley, J. D., & Servatius, R. J. (2016). Individual differences in resting-state functional connectivity with the executive network: Support for a cerebellar role in anxiety vulnerability. Brain Structure & Function, 221, 3081-3093. https://doi.org/10.1007/s00429-015-1088-6.
Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20, 115-125. https://doi.org/10.1038/nn.4450.
Cohen, N., Pell, L., Edelson, M. G., Ben-Yakov, A., Pine, A., & Dudai, Y. (2015). Peri-encoding predictors of memory encoding and consolidation. Neuroscience and Biobehavioral Reviews, 50, 128-142. https://doi.org/10.1016/j.neubiorev.2014.11.002.
Cooper, R. A., & Ritchey, M. (2019). Cortico-hippocampal network connections support the multidimensional quality of episodic memory. eLife, 8, 1-35. https://doi.org/10.7554/eLife.45591.
Eckstein, K. N., Wildgruber, D., Ethofer, T., Brück, C., Jacob, H., Erb, M., & Kreifelts, B. (2022). Correlates of individual voice and face preferential responses during resting state. Scientific Reports, 12, 7117. https://doi.org/10.1038/s41598-022-11367-6.
Ferstl, E. C., Rinck, M., & Von Cramon, D. Y. (2005). Emotional and temporal aspects of situation model processing during text comprehension: An event-related fMRI study. Journal of Cognitive Neuroscience, 17, 724-739. https://doi.org/10.1162/0898929053747658.
Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1-2), 56-78. https://doi.org/10.1002/hbm.460020107.
Gallagher, H. L., Happé, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia, 38(1), 11-21. https://doi.org/10.1016/s0028-3932(99)00053-6.
Goldvarg, E., & Johnson-Laird, P. N. (2001). Naive causality: A mental model theory of causal meaning and reasoning. Cognitive Science, 25, 565-610. https://doi.org/10.1207/s15516709cog2504_3.
Graesser, A. C., Hauft-smith, K., Cohen, A. D., Leonard, D., Hauft-smith, K., Cohen, A. D., & Pyles, L. D. (1980). Advanced outlines, familiarity, and text genre on retention of prose. The Journal of Experimental Education, 48, 281-290. https://doi.org/10.1080/00220973.1980.11011745.
Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101, 371-395. https://doi.org/10.1037/0033-295X.101.3.371.
Happé, F. G. E. (1993). Communicative competence and theory of mind in autism: A test of relevance theory. Cognition, 48, 101-119. https://doi.org/10.1016/0010-0277(93)90026-R.
Hayles, N. K., & Richardson, B. (1999). Unlikely stories: Causality and the nature of modern narrative. South Atlantic Review, 64, 140-141. https://doi.org/10.2307/3201762.
Hirst, W., & Manier, D. (2008). Towards a psychology of collective memory. Memory, 16, 183-200. https://doi.org/10.1080/09658210701811912.
Hoerl, C. (2007). Episodic memory, autobiographical memory, narrative: On three key notions in current approaches to memory development. Philosophical Psychology, 20, 621-640. https://doi.org/10.1080/09515080701537988.
Hopstaken, J. F., van der Linden, D., Bakker, A. B., & Kompier, M. A. J. (2015). The window of my eyes: Task disengagement and mental fatigue covary with pupil dynamics. Biological Psychology, 110, 100-106. https://doi.org/10.1016/j.biopsycho.2015.06.013.
Jääskeläinen, I. P., Sams, M., Glerean, E., & Ahveninen, J.(2021). Movies and narratives as naturalistic stimuli in neuroimaging. NeuroImage, 224, 117445. https://doi.org/10.1016/j.neuroimage.2020.117445.
Kumar, U., Arya, A., & Agarwal, V. (2022). Altered functional connectivity in children with ADHD while performing cognitive control task. Psychiatry Research: Neuroimaging, 326, 111531. https://doi.org/10.1016/j.pscychresns.2022.111531.
Kuperberg, G. R., Lakshmanan, B. M., Caplan, D. N., & Holcomb, P. J. (2006). Making sense of discourse: An fMRI study of causal inferencing across sentences. Neuroimage, 33(1), 343-361.
Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12, 72-79. https://doi.org/10.1016/j.tics.2007.11.004.
Lahnakoski, J. M., Jääskeläinen, I. P., Sams, M., & Nummenmaa, L. (2017). Neural mechanisms for integrating consecutive and interleaved natural events. Human Brain Mapping, 38, 3360-3376. https://doi.org/10.1002/hbm.23591.
Lee, C. R., & Margolis, D. J. (2016). Pupil dynamics reflect behavioral choice and learning in a Go/NoGo tactile decision-making task in mice. Frontiers in Behavioral Neuroscience, 10, 1-14. https://doi.org/10.3389/fnbeh.2016.00200.
Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. The Journal of Neuroscience, 31, 2906-2915. https://doi.org/10.1523/JNEUROSCI.3684-10.2011.
Mar, R. A. (2004). The neuropsychology of narrative: Story comprehension, story production and their interrelation. Neuropsychologia, 42, 1414-1434. https://doi.org/10.1016/j.neuropsychologia.2003.12.016.
Mar, R. A. (2011). The neural bases of social cognition and story comprehension. Annual Review of Psychology, 62, 103-134. https://doi.org/10.1146/annurev-psych-120709-145406.
Margulies, D. S., Villringer, A., Vincent, J. L., Milham, M. P., Kelly, C., Uddin, L. Q., Castellanos, F. X., Petrides, M., Lohmann, G., & Biswal, B. B. (2009). Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Sciences, 106, 20069-20074. https://doi.org/10.1073/pnas.0905314106.
Mason, R. A., & Just, M. A. (2004). How the brain processes causal inferences in text: A theoretical account of generation and integration component processes utilizing both cerebral hemispheres. Psychological Science, 15, 1-7. https://doi.org/10.1111/j.0963-7214.2004.01501001.x.
Mason, R. A., & Just, M. A. (2009). The role of the theory-of-mind cortical network in the comprehension of narratives. Language and Linguistics Compass, 3, 157-174.
Mateu-Estivill, R., Forné, S., López-Sala, A., Falcón, C., Caldú, X., Sopena, J. M., Sans, A., Adan, A., Grau, S., Bargalló, N., & Serra-Grabulosa, J. M. (2021). Functional connectivity alterations associated with literacy difficulties in early readers. Brain Imaging and Behavior, 15, 2109-2120. https://doi.org/10.1007/s11682-020-00406-3.
Molenberghs, P., Johnson, H., Henry, J. D., & Mattingley, J. B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 65, 276-291. https://doi.org/10.1016/j.neubiorev.2016.03.020.
Morris, T. P., Chaddock-Heyman, L., Ai, M., Anteraper, S. A., Castañon, A. N., Whitfield-Gabrieli, S., Hillman, C. H., McAuley, E., & Kramer, A. F. (2021). Enriching activities during childhood are associated with variations in functional connectivity patterns later in life. Neurobiology of Aging, 104, 92-101. https://doi.org/10.1016/j.neurobiolaging.2021.04.002.
Naghavi, H. R., & Nyberg, L. (2005). Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition, 14, 390-425. https://doi.org/10.1016/j.concog.2004.10.003.
Nieto-Castanon, A. (2020). Handbook of functional connectivity magnetic resonance imaging methods in CONN. Hilbert Press.
Nieto-Castanon, A. (2022). Brain-wide connectome inferences using functional connectivity MultiVariate Pattern Analyses (fc-MVPA). PLoS Computational Biology, 18, e1010634. https://doi.org/10.1371/journal.pcbi.1010634.
Oatley, K. (1992). Best laid schemes: The psychology of the emotions. Cambridge University Press.
Ohtsuka, K., & Brewer, W. F. (1992). Discourse organization in the comprehension of temporal order in narrative texts. Discourse Processes, 15, 317-336. https://doi.org/10.1080/01638539209544815.
O'Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953-965. https://doi.org/10.1093/cercor/bhp157.
Rankin, M. L., & McCormack, T. (2013). The temporal priority principle: At what age does this develop. Frontiers in Psychology, 4, 178. https://doi.org/10.3389/fpsyg.2013.00178.
Richmond, L. L., & Zacks, J. M. (2017). Constructing experience: Event models from perception to action. Trends in Cognitive Sciences, 21, 962-980. https://doi.org/10.1016/j.tics.2017.08.005.
Sarbin, T. R. (1986). The narrative as root metaphor for psychology. In Narrative psychology: The storied nature of human conduct (pp. 2-21). Praeger.
Saxe, R., Carey, S., & Kanwisher, N. (2004). Understanding other minds: Linking developmental psychology and functional neuroimaging. Annual Review of Psychology, 55, 87-124. https://doi.org/10.1146/annurev.psych.55.090902.142044.
Schurz, M., Maliske, L., & Kanske, P. (2020). Cross-network interactions in social cognition: A review of findings on task related brain activation and connectivity. Cortex, 130, 142-157. https://doi.org/10.1016/j.cortex.2020.05.006.
Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. (2016). Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications, 7, 12141. https://doi.org/10.1038/ncomms12141.
Smirnov, D., Glerean, E., Lahnakoski, J. M., Salmi, J., Jääskeläinen, I. P., Sams, M., Nummenmaa, L., Lahnakoski, J. M., Nummenmaa, L., Smirnov, D., Glerean, E., Sams, M., Jääskeläinen, I. P., Lahnakoski, J. M., Salmi, J., Jääskeläinen, I. P., Sams, M., & Nummenmaa, L. (2014). Fronto-parietal network supports context-dependent speech comprehension. Neuropsychologia, 63, 293-303. https://doi.org/10.1016/j.neuropsychologia.2014.09.007.
Stillman, P. E., Lee, H., Deng, X., Rao Unnava, H., Cunningham, W. A., & Fujita, K. (2017). Neurological evidence for the role of construal level in future-directed thought. Social Cognitive and Affective Neuroscience, 12, 937-947. https://doi.org/10.1093/scan/nsx022.
Tomasulu, F. P. (2007). “Bicycle thieves”: A re-reading. Cinema Journal, 21, 2-13.
Tortora, D., Severino, M., Di Biase, C., Malova, M., Parodi, A., Minghetti, D., Traggiai, C., Uccella, S., Boeri, L., Morana, G., Rossi, A., & Ramenghi, L. A. (2019). Early pain exposure influences functional brain connectivity in very preterm neonates. Frontiers in Neuroscience, 13, 1-11. https://doi.org/10.3389/fnins.2019.00899.
Tylén, K., Christensen, P., Roepstorff, A., Lund, T., Østergaard, S., & Donald, M. (2015). Brains striving for coherence: Long-term cumulative plot formation in the default mode network. NeuroImage, 121, 106-114. https://doi.org/10.1016/j.neuroimage.2015.07.047.
Uddin, L. Q., Kelly, A. M. C., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30, 625-637. https://doi.org/10.1002/hbm.20531.
Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a functional core of the default-mode network. The Journal of Neuroscience, 34, 932-940. https://doi.org/10.1523/JNEUROSCI.4227-13.2014.
van der Hart, O., Nijenhuis, E. R., & Steele, K. (2006). The haunted self: Structural dissociation and the treatment of chronic traumatization (First. ed.). W. W. Norton & Company.
Virtue, S., Haberman, J., Clancy, Z., Parrish, T., & Jung Beeman, M. (2006). Neural activity of inferences during story comprehension. Brain Research, 1084, 104-114. https://doi.org/10.1016/j.brainres.2006.02.053.
Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happé, F., Falkai, P., Maier, W., Shah, N. J., Fink, G. R., & Zilles, K. (2001). Mind Reading: Neural Mechanisms of Theory of Mind and Self-Perspective. NeuroImage, 14(1), 170-181. https://doi.org/10.1006/nimg.2001.0789.
Westfall, D. R., Anteraper, S. A., Chaddock-Heyman, L., Drollette, E. S., Raine, L. B., Whitfield-Gabrieli, S., Kramer, A. F., & Hillman, C. H. (2020). Resting-state functional connectivity and scholastic performance in preadolescent children: A data-driven multivoxel pattern analysis (MVPA). Journal of Clinical Medicine, 9, 3198. https://doi.org/10.3390/jcm9103198.
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2, 125-141. https://doi.org/10.1089/brain.2012.0073.
Whitney, C., Huber, W., Klann, J., Weis, S., Krach, S., & Kircher, T. (2009). Neural correlates of narrative shifts during auditory story comprehension. NeuroImage, 47, 360-366. https://doi.org/10.1016/j.neuroimage.2009.04.037.
Worsley, K. J., Chen, J. I., Lerch, J., & Evans, A. C. (2005). Comparing functional connectivity via thresholding correlations and singular value decomposition. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 913-920. https://doi.org/10.1098/rstb.2005.1637.
Yarkoni, T., Speer, N. K., & Zacks, J. M. (2008). Neural substrates of narrative comprehension and memory. NeuroImage, 41, 1408-1425. https://doi.org/10.1016/j.neuroimage.2008.03.062.
Yazar, Y., Bergström, Z. M., & Simons, J. S. (2014). Continuous theta burst stimulation of angular gyrus reduces subjective recollection. PLoS ONE, 9, e110414. https://doi.org/10.1371/journal.pone.0110414.
Yeshurun, Y., Swanson, S., Simony, E., Chen, J., Lazaridi, C., Honey, C. J., & Hasson, U. (2017). Same story, different story: The neural representation of interpretive frameworks. Psychological Science, 28, 307-319. https://doi.org/10.1177/0956797616682029.
Zacks, J. M. (2010). The brain's cutting-room floor: Segmentation of narrative cinema. Frontiers in Human Neuroscience, 4, 1-15. https://doi.org/10.3389/fnhum.2010.00168.
Zacks, J. M., Braver, T. S., Sheridan, M. A., Donaldson, D. I., Snyder, A. Z., Ollinger, J. M., Buckner, R. L., & Raichle, M. E. (2001). Human brain activity time-locked to perceptual event boundaries. Nature Neuroscience, 4, 651-655. https://doi.org/10.1038/88486.
Grant Information:
1032/19 Israel Science Foundation
Contributed Indexing:
Keywords: causal inference; functional MRI; functional connectivity; narrative; social cognition
Entry Date(s):
Date Created: 20230108 Date Completed: 20230306 Latest Revision: 20230327
Update Code:
20240105
DOI:
10.1111/ejn.15909
PMID:
36617430
Czasopismo naukowe
Forming narratives is of key importance to human experience, enabling one to render large amounts of information into relatively compacted stories for future retrieval, giving meaning to otherwise fragmented occurrences. The neural mechanisms that underlie coherent narrative construction of causally connected information over prolonged temporal periods are yet unclear. Participants in this fMRI study observed consecutive scenes from a full-length movie either in their original order, enabling causal inferences over time, or in reverse order, impeding a key component of coherent narratives-causal inference. In between scenes, we presented short periods of blank screens for examining post-encoding processing effects. Using multivariate pattern analysis (MVPA) followed by seed-base correlation analysis, we hypothesized that networks involved in online monitoring of incoming information on the one hand, and offline processing of previous occurrences on the other would differ between the groups. We found that despite the exposure to the same scenes, the chronological-order condition exhibited enhanced functional connectivity in frontoparietal regions associated with information integration and working memory. The reverse-order condition yielded offline, post-scene coactivation of neural networks involved in social cognition and particularly theory of mind and action comprehension. These findings shed light on offline processes of narrative construction efforts, highlighting the role of social cognition networks in seeking for narrative coherence.
(© 2023 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies