Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The Virtues of Interpretable Medical AI.

Tytuł:
The Virtues of Interpretable Medical AI.
Autorzy:
Hatherley J; School of Philosophical, Historical, and International Studies, Monash University, Clayton, Victoria, Australia.
Sparrow R; School of Philosophical, Historical, and International Studies, Monash University, Clayton, Victoria, Australia.
Howard M; School of Philosophical, Historical, and International Studies, Monash University, Clayton, Victoria, Australia.
Źródło:
Cambridge quarterly of healthcare ethics : CQ : the international journal of healthcare ethics committees [Camb Q Healthc Ethics] 2023 Jan 10, pp. 1-10. Date of Electronic Publication: 2023 Jan 10.
Publication Model:
Ahead of Print
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, NY : Cambridge University Press, c1992-
Contributed Indexing:
Keywords: artificial intelligence (AI); black box; deep learning; ethics; explainable AI; healthcare; medicine
Entry Date(s):
Date Created: 20230110 Latest Revision: 20230110
Update Code:
20230110
DOI:
10.1017/S0963180122000664
PMID:
36624634
Czasopismo naukowe
Artificial intelligence (AI) systems have demonstrated impressive performance across a variety of clinical tasks. However, notoriously, sometimes these systems are "black boxes." The initial response in the literature was a demand for "explainable AI." However, recently, several authors have suggested that making AI more explainable or "interpretable" is likely to be at the cost of the accuracy of these systems and that prioritizing interpretability in medical AI may constitute a "lethal prejudice." In this paper, we defend the value of interpretability in the context of the use of AI in medicine. Clinicians may prefer interpretable systems over more accurate black boxes, which in turn is sufficient to give designers of AI reason to prefer more interpretable systems in order to ensure that AI is adopted and its benefits realized. Moreover, clinicians may be justified in this preference. Achieving the downstream benefits from AI is critically dependent on how the outputs of these systems are interpreted by physicians and patients. A preference for the use of highly accurate black box AI systems, over less accurate but more interpretable systems, may itself constitute a form of lethal prejudice that may diminish the benefits of AI to-and perhaps even harm-patients.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies