Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Addressing systemic problems with exposure assessments to protect the public's health.

Tytuł:
Addressing systemic problems with exposure assessments to protect the public's health.
Autorzy:
Vandenberg LN; Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA. .
Rayasam SDG; Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.
Axelrad DA; Independent Consultant, Washington, DC, USA.
Bennett DH; Department of Public Health Sciences, University of California, Davis, Davis, CA, USA.
Brown P; Social Science Environmental Health Research Institute, Northeastern University, Boston, MA, USA.
Carignan CC; Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
Chartres N; Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.
Diamond ML; Department of Earth Sciences, University of Toronto, Toronto, ON, Canada.; School of the Environment, University of Toronto, Toronto, ON, Canada.
Joglekar R; Earthjustice, New York, NY, USA.; Earthjustice, Washington, DC, USA.
Shamasunder B; Department of Urban & Environmental Policy and Public Health, Occidental College, Los Angeles, CA, USA.
Shrader-Frechette K; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.; Department of Philosophy, University of Notre Dame, Notre Dame, IN, USA.
Subra WA; Louisiana Environmental Action Network, Baton Rouge, LA, USA.
Zarker K; Washington State Department of Ecology, Olympia, WA, USA.
Woodruff TJ; Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.
Źródło:
Environmental health : a global access science source [Environ Health] 2023 Jan 12; Vol. 21 (Suppl 1), pp. 121. Date of Electronic Publication: 2023 Jan 12.
Typ publikacji:
Journal Article; Review; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2002-
MeSH Terms:
Environmental Exposure*/adverse effects
Environmental Exposure*/prevention & control
Environmental Pollutants*/toxicity
Environmental Pollutants*/analysis
Humans ; Public Health ; Public Policy ; Uncertainty ; Risk Assessment
References:
Trasande L, Shaffer RM, Sathyanarayana S. Food additives and child health. Pediatrics. 2018;142(2):e20181408. (PMID: 10.1542/peds.2018-1408)
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–150. (PMID: 10.1210/er.2015-1010)
Balbus JM, Barouki R, Birnbaum LS, Etzel RA, Gluckman PD, Grandjean P, et al. Early-life prevention of non-communicable diseases. Lancet. 2013;381(9860):3–4. (PMID: 10.1016/S0140-6736(12)61609-2)
Bennett D, Bellinger DC, Birnbaum LS, Bradman A, Chen A, Cory-Slechta DA, et al. Project TENDR: targeting environmental Neuro-developmental risks the TENDR consensus statement. Environ Health Perspect. 2016;124(7):A118–22. (PMID: 10.1289/EHP358)
Di Renzo GC, Conry JA, Blake J, DeFrancesco MS, DeNicola N, Martin JN Jr, et al. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. Int J Gynaecol Obstet. 2015;131(3):219–25. (PMID: 10.1016/j.ijgo.2015.09.002)
Bergman Å, Heindel JJ, Kasten T, Kidd KA, Jobling S, Neira M, et al. The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Perspect. 2013;121(4):a104–6. (PMID: 10.1289/ehp.1205448)
Maffini MV, Vandenberg LN. Closing the gap: improving additives safety evaluation to reflect human health concerns. Environ Risk Assess Remediat. 2017;1(3):26–33.
Vandenberg LN. Low dose effects challenge the evaluation of endocrine disrupting chemicals. Trends Food Sci Technol. 2019;84:58–61. (PMID: 10.1016/j.tifs.2018.11.029)
Woodruff TJ, Zeise L, Axelrad DA, Guyton KZ, Janssen S, Miller M, et al. Meeting report: moving upstream-evaluating adverse upstream end points for improved risk assessment and decision-making. Environ Health Perspect. 2008;116(11):1568–75. (PMID: 10.1289/ehp.11516)
Vandenberg LN, Pelch KE. Systematic review methodologies and endocrine disrupting chemicals: improving evaluations of the plastic monomer Bisphenol a. Endocr Metab Immune Disord Drug Targets. 2021; in press.
Pellizzari ED, Woodruff TJ, Boyles RR, Kannan K, Beamer PI, Buckley JP, et al. Identifying and prioritizing chemicals with uncertain burden of exposure: opportunities for biomonitoring and health-related research. Environ Health Perspect. 2019;127(12):126001. (PMID: 10.1289/EHP5133)
Mantha A, Tang M, Pieper KJ, Parks JL, Edwards MA. Tracking reduction of water lead levels in two homes during the Flint Federal Emergency. Water Res X. 2020;7:100047. (PMID: 10.1016/j.wroa.2020.100047)
Evans M, Palmer K, Aldy J, Fowlie M, Kotchen M, Levinson A. The role of retrospective analysis in an era of deregulation: lessons from the US mercury and air toxics standards. Rev Environ Econ Policy. 2021;15(1):163–8. (PMID: 10.1086/712887)
Scherer LD, Maynard A, Dolinoy DC, Fagerlin A, Zikmund-Fisher BJ. The psychology of 'regrettable substitutions': examining consumer judgements of Bisphenol a and its alternatives. Health Risk Soc. 2014;16(7–8):649–66. (PMID: 10.1080/13698575.2014.969687)
Lucas D, Petty SM, Keen O, Luedeka B, Schlummer M, Weber R, et al. Methods of responsibly managing end-of-life foams and plastics containing flame retardants: part I. Environ Eng Sci. 2018;35(6):573–87. (PMID: 10.1089/ees.2017.0147)
Cordner A, Poudrier G, DiValli J, Brown P. Combining social science and environmental Health Research for community engagement. Int J Environ Res Public Health. 2019;16(18):3483. (PMID: 10.3390/ijerph16183483)
Sass JB, Colangelo A. European Union bans atrazine, while the United States negotiates continued use. Int J Occup Environ Health. 2006;12(3):260–7. (PMID: 10.1179/oeh.2006.12.3.260)
European Commission. The precautionary principle: decision-making under uncertainty. Sci Environ Policy. 2017:1–24.
National Research Council. Exposure science in the 21st century: a vision and a strategy. Washington, DC: National Academies Press; 2012.
US EPA. Facility level comparisons. In: Clean air markets; 2021. https://www.epa.gov/airmarkets/facility-level-comparisons .
US EPA: Technical support document EPA’s 2014 national air toxics assessment. 2018 Available from: https://www.epa.gov/sites/default/files/2018-2009/documents/2014_nata_technical_support_document.pdf .
Levy JI, Bennett DH, Melly SJ, Spengler JD. Influence of traffic patterns on particulate matter and polycyclic aromatic hydrocarbon concentrations in Roxbury, Massachusetts. J Expo Anal Environ Epidemiol. 2003;13(5):364–71. (PMID: 10.1038/sj.jea.7500289)
Tuttle L, Meng Q, Moya J, Johns DO. Consideration of age-related changes in behavior trends in older adults in assessing risks of environmental exposures. J Aging Health. 2013;25(2):243–73. (PMID: 10.1177/0898264312468032)
US EPA. Exposure factors handbook 2011 edition (final). Washington, DC, EPA/600/R-09/052F: US Environmental Protection Agency; 2011.
Doherty BT, Koelmel JP, Lin EZ, Romano ME, Godri Pollitt KJ. Use of Exposomic methods incorporating sensors in environmental epidemiology. Curr Environ Health Rep. 2021;8(1):34–41. (PMID: 10.1007/s40572-021-00306-8)
Koelmel JP, Lin EZ, Guo P, Zhou J, He J, Chen A, et al. Exploring the external exposome using wearable passive samplers - the China BAPE study. Environ Pollut. 2021;270:116228. (PMID: 10.1016/j.envpol.2020.116228)
Harada KH, Tanaka K, Sakamoto H, Imanaka M, Niisoe T, Hitomi T, et al. Biological monitoring of human exposure to neonicotinoids using urine samples, and neonicotinoid excretion kinetics. PLoS One. 2016;11(1):e0146335. (PMID: 10.1371/journal.pone.0146335)
Canova C, Cantarutti A. Population-based birth cohort studies in epidemiology. Int J Environ Res Public Health. 2020;17(15):5276. (PMID: 10.3390/ijerph17155276)
Wild CP. Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14(8):1847–50. (PMID: 10.1158/1055-9965.EPI-05-0456)
Rappaport SM, Smith MT. Epidemiology. Environment and disease risks. Science. 2010;330(6003):460–1. (PMID: 10.1126/science.1192603)
Schantz SL, Eskenazi B, Buckley JP, Braun JM, Sprowles JN, Bennett DH, et al. A framework for assessing the impact of chemical exposures on neurodevelopment in ECHO: opportunities and challenges. Environ Res. 2020;188:109709. (PMID: 10.1016/j.envres.2020.109709)
Buckley JP, Barrett ES, Beamer PI, Bennett DH, Bloom MS, Fennell TR, et al. Opportunities for evaluating chemical exposures and child health in the United States: the environmental influences on child health outcomes (ECHO) program. J Expo Sci Environ Epidemiol. 2020;30(3):397–419. (PMID: 10.1038/s41370-020-0211-9)
Padula AM, Monk C, Brennan PA, Borders A, Barrett ES, McEvoy CT, et al. A review of maternal prenatal exposures to environmental chemicals and psychosocial stressors—implications for research on perinatal outcomes in the ECHO program. J Perinatol. 2020;40(1):10–24. (PMID: 10.1038/s41372-019-0510-y)
Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease etiology and prevention. Curr Opin Pediatr. 2015;27(2):248–53. (PMID: 10.1097/MOP.0000000000000191)
Grandjean P, Abdennebi-Najar L, Barouki R, Cranor CF, Etzel RA, Gee D, et al. Timescales of developmental toxicity impacting on research and needs for intervention. Basic Clin Pharmacol Toxicol. 2019;125 Suppl 3(Suppl 3):70–80. (PMID: 10.1111/bcpt.13162)
Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. Optimal exposure biomarkers for nonpersistent Chemicals in Environmental Epidemiology. Environ Health Perspect. 2015;123(7):A166–8. (PMID: 10.1289/ehp.1510041)
Valic MS, Zheng G. Research tools for extrapolating the disposition and pharmacokinetics of nanomaterials from preclinical animals to humans. Theranostics. 2019;9(11):3365–87. (PMID: 10.7150/thno.34509)
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33(3):378–455. (PMID: 10.1210/er.2011-1050)
Sullivan J, Croisant S, Howarth M, Rowe GT, Fernando H, Phillips-Savoy A, et al. Building and maintaining a citizen science network with fishermen and fishing communities post Deepwater horizon oil disaster using a CBPR approach. New Solut. 2018;28(3):416–47. (PMID: 10.1177/1048291118795156)
Eggers MJ, Doyle JT, Lefthand MJ, Young SL, Moore-Nall AL, Kindness L, et al. Community engaged cumulative risk assessment of exposure to inorganic well water contaminants, crow reservation, Montana. Int J Environ Res Public Health. 2018;15(1):76. (PMID: 10.3390/ijerph15010076)
Hoover E. Cultural and health implications of fish advisories in a native American community. Ecol Process. 2013;2(1):1–12. (PMID: 10.1186/2192-1709-2-4)
Hubbell BJ, Kaufman A, Rivers L, Schulte K, Hagler G, Clougherty J, et al. Understanding social and behavioral drivers and impacts of air quality sensor use. Sci Total Environ. 2018;621:886–94. (PMID: 10.1016/j.scitotenv.2017.11.275)
Singla S, Bansal D, Misra A, Raheja G. Towards an integrated framework for air quality monitoring and exposure estimation-a review. Environ Monit Assess. 2018;190(9):562. (PMID: 10.1007/s10661-018-6940-8)
Thoma E, George I, Duvall R, Wu T, Whitaker D, Oliver K, et al. Rubbertown next generation emissions measurement demonstration project. Int J Environ Res Public Health. 2019;16(11):2041. (PMID: 10.3390/ijerph16112041)
Spalinger SM, von Braun MC, Petrosyan V, von Lindern IH. Northern Idaho house dust and soil lead levels compared to the Bunker Hill superfund site. Environ Monit Assess. 2007;130(1–3):57–72. (PMID: 10.1007/s10661-006-9450-z)
Spears BL, Hansen JA, Audet DJ. Blood lead concentrations in waterfowl utilizing Lake Coeur d'Alene, Idaho. Arch Environ Contam Toxicol. 2007;52(1):121–8. (PMID: 10.1007/s00244-006-0061-z)
von Lindern I, Spalinger S, Petroysan V, von Braun M. Assessing remedial effectiveness through the blood lead:soil/dust lead relationship at the Bunker Hill superfund site in the silver valley of Idaho. Sci Total Environ. 2003;303(1–2):139–70. (PMID: 10.1016/S0048-9697(02)00352-2)
Sheldrake S, Stifelman M. A case study of lead contamination cleanup effectiveness at Bunker Hill. Sci Total Environ. 2003;303(1–2):105–23. (PMID: 10.1016/S0048-9697(02)00354-6)
von Lindern IH, Spalinger SM, Bero BN, Petrosyan V, von Braun MC. The influence of soil remediation on lead in house dust. Sci Total Environ. 2003;303(1–2):59–78. (PMID: 10.1016/S0048-9697(02)00356-X)
Moodie SM, Tsui EK, Silbergeld EK. Community- and family-level factors influence care-giver choice to screen blood lead levels of children in a mining community. Environ Res. 2010;110(5):484–96. (PMID: 10.1016/j.envres.2010.03.012)
Moodie SM, Evans EL. Ethical issues in using children's blood lead levels as a remedial action objective. Am J Public Health. 2011;101 Suppl 1(Suppl 1):S156–60. (PMID: 10.2105/AJPH.2011.300226)
Rosner D. A Lead poisoning crisis enters its second century. Health Aff (Millwood). 2016;35(5):756–9. (PMID: 10.1377/hlthaff.2016.0362)
Banwell C, Housen T, Smurthwaite K, Trevenar S, Walker L, Todd K, et al. Health and social concerns about living in three communities affected by per-and polyfluoroalkyl substances (PFAS): a qualitative study in Australia. PLoS One. 2021;16(1):e0245141. (PMID: 10.1371/journal.pone.0245141)
Lanphear BP. Low-level toxicity of chemicals: no acceptable levels? PLoS Biol. 2017;15(12):e2003066. (PMID: 10.1371/journal.pbio.2003066)
Centers for Disease Control and Prevention (CDC) Advisory Committee on Childhood Lead Poisoning Prevention. Interpreting and managing blood lead levels < 10 microg/dL in children and reducing childhood exposures to lead: recommendations of CDC's advisory Committee on childhood Lead poisoning prevention. MMWR Recomm Rep. 2007;56(Rr-8):1–16.
Wang Z, Walker GW, Muir DC, Nagatani-Yoshida K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol. 2020;54(5):2575–84. (PMID: 10.1021/acs.est.9b06379)
Persson L, Carney Almroth BM, Collins CD, Cornell S, de Wit CA, Diamond ML, et al. Outside the safe operating space of the planetary boundary for novel entities. Environ Sci Technol. 2022;56:1510–21. (PMID: 10.1021/acs.est.1c04158)
Choi J, Morck TA, Joas A, Knudsen E. Major national human biomonitoring programs in chemical exposure assessment. Environ Sci. 2015;2:782–802.
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic signatures of the Exposome-quantifying the impact of exposure to environmental chemicals on human health. Metabolites. 2020;10(11):454. (PMID: 10.3390/metabo10110454)
Cousins IT, DeWitt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, et al. The high persistence of PFAS is sufficient for their management as a chemical class. Environ Sci Process Impacts. 2020;22(12):2307–12. (PMID: 10.1039/D0EM00355G)
Martin O, Scholze M, Ermler S, McPhie J, Bopp SK, Kienzler A, et al. Ten years of research on synergisms and antagonisms in chemical mixtures: a systematic review and quantitative reappraisal of mixture studies. Environ Int. 2021;146:106206. (PMID: 10.1016/j.envint.2020.106206)
Sexton K, Linder SH. Cumulative risk assessment for combined health effects from chemical and nonchemical stressors. Am J Public Health. 2011;101(S1):S81–8. (PMID: 10.2105/AJPH.2011.300118)
National Research Council. Phthalates and cumulative risk assessment: the tasks ahead. Washington, DC: The National Academies Press; 2009.
National Research Council. Science and decisions: advancing risk assessment. Washington, DC: The National Academies Press; 2009.
Committee on the Design and Evaluation of Safer Chemical Substitutions, Board on Chemical Sciences and Technology, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council. A framework to guide selection of chemical alternatives. Washington (DC): National Academies Press (US); 2014.
Sackmann K, Reemtsma T, Rahmberg M, Bunke D. Impact of European chemicals regulation on the industrial use of plasticizers and patterns of substitution in Scandinavia. Environ Int. 2018;119:346–52. (PMID: 10.1016/j.envint.2018.06.037)
Ye X, Wong LY, Kramer J, Zhou X, Jia T, Calafat AM. Urinary concentrations of Bisphenol a and three other Bisphenols in convenience samples of U.S. adults during 2000-2014. Environ Sci Technol. 2015;49(19):11834–9. (PMID: 10.1021/acs.est.5b02135)
Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7(2):21. (PMID: 10.3390/toxics7020021)
Buckley JP, Kuiper JR, Bennett DH, Barrett ES, Bastain T, Breton CV, et al. Exposure to contemporary and emerging Chemicals in Commerce among pregnant women in the United States: the environmental influences on child health outcome (ECHO) program. Environ Sci Technol. 2022;56:6560–73. (PMID: 10.1021/acs.est.1c08942)
Blum A, Behl M, Birnbaum L, Diamond ML, Phillips A, Singla V, et al. Organophosphate Ester flame retardants: are they a regrettable substitution for Polybrominated Diphenyl ethers? Environ Sci Technol Lett. 2019;6(11):638–49. (PMID: 10.1021/acs.estlett.9b00582)
Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? Environ Health Perspect. 2004;112(1):9–17. (PMID: 10.1289/ehp.6559)
Meironyté D, Norén K, Bergman A. Analysis of polybrominated diphenyl ethers in Swedish human milk. A time-related trend study, 1972-1997. J Toxicol Environ Health A. 1999;58(6):329–41. (PMID: 10.1080/009841099157197)
Betts K. New flame retardants detected in indoor and outdoor environments. Washington, DC: ACS Publications; 2008. (PMID: 10.1021/es802145r)
Deegan D. Brominated flame retardants to be voluntarily phased out. In: Environmental news. Edited by US EPA; 2003. https://archive.epa.gov/epapages/newsroom_archive/newsreleases/26f9f23c42cd007d85256dd4005525d2.html .
Cordner A. Toxic safety: flame retardants, chemical controversies, and environmental health. New York: Columbia University Press; 2016. (PMID: 10.7312/columbia/9780231171465.001.0001)
Cowell WJ, Sjödin A, Jones R, Wang Y, Wang S, Herbstman JB. Temporal trends and developmental patterns of plasma polybrominated diphenyl ether concentrations over a 15-year period between 1998 and 2013. J Expo Sci Environ Epidemiol. 2019;29(1):49–60. (PMID: 10.1038/s41370-018-0031-3)
Zota AR, Linderholm L, Park J-S, Petreas M, Guo T, Privalsky ML, et al. Temporal comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the serum of second trimester pregnant women recruited from San Francisco general hospital, California. Environ Sci Technol. 2013;47(20):11776–84. (PMID: 10.1021/es402204y)
Stapleton HM, Allen JG, Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, et al. Alternate and new brominated flame retardants detected in U.S. house dust. Environ Sci Technol. 2008;42(18):6910–6. (PMID: 10.1021/es801070p)
Covaci A, Harrad S, Abdallah MA, Ali N, Law RJ, Herzke D, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int. 2011;37(2):532–56. (PMID: 10.1016/j.envint.2010.11.007)
Callahan P, Roe S, Hawthorne M. Playing with fire. Chicago: Tribune; 2012.
Davis A, Ryan PB, Cohen JA, Harris D, Black M. Chemical exposures from upholstered furniture with various flame retardant technologies. Indoor Air. 2021;31(5):1473–83. (PMID: 10.1111/ina.12805)
Michaels D. Doubt is their product: how Industry's assault on science threatens your health. New York: Oxford University Press; 2008.
Goldberg RF, Vandenberg LN. Distract, display, disrupt: examples of manufactured doubt from five industries. Rev Environ Health. 2019;34(4):349–63. (PMID: 10.1515/reveh-2019-0004)
Goldberg RF, Vandenberg LN. The science of spin: targeted strategies to manufacture doubt with detrimental effects on environmental and public health. Environ Health. 2021;20(1):33. (PMID: 10.1186/s12940-021-00723-0)
Brody JG, Morello-Frosch R, Brown P, Rudel RA, Altman RG, Frye M, et al. Improving disclosure and consent: "is it safe?": new ethics for reporting personal exposures to environmental chemicals. Am J Public Health. 2007;97(9):1547–54. (PMID: 10.2105/AJPH.2006.094813)
Cordner A, De La Rosa VY, Schaider LA, Rudel RA, Richter L, Brown P. Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Expo Sci Environ Epidemiol. 2019;29(2):157–71. (PMID: 10.1038/s41370-018-0099-9)
Wattenberg EV, Bielicki JM, Suchomel AE, Sweet JT, Vold EM, Ramachandran G. Assessment of the acute and chronic health hazards of hydraulic fracturing fluids. J Occup Environ Hyg. 2015;12(9):611–24. (PMID: 10.1080/15459624.2015.1029612)
Singh K, Oates C, Plant J, Voulvoulis N. Undisclosed chemicals--implications for risk assessment: a case study from the mining industry. Environ Int. 2014;68:1–15. (PMID: 10.1016/j.envint.2014.02.012)
Martin JW, Kannan K, Berger U, De Voogt P, Field J, Franklin J, et al. Peer reviewed: analytical challenges hamper Perfluoroalkyl research. Environ Sci Technol. 2004;38(13):248A–55A. (PMID: 10.1021/es0405528)
Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Europe. 2016;28:3. (PMID: 10.1186/s12302-016-0070-0)
Vandenberg LN, Blumberg B, Antoniou MN, Benbrook CM, Carroll L, Colborn T, et al. Is it time to reassess current safety standards for glyphosate-based herbicides? J Epidemiol Community Health. 2017;71(6):613–8. (PMID: 10.1136/jech-2016-208463)
Perry MJ, Mandrioli D, Belpoggi F, Manservisi F, Panzacchi S, Irwin C. Historical evidence of glyphosate exposure from a US agricultural cohort. Environ Health. 2019;18(1):42. (PMID: 10.1186/s12940-019-0474-6)
Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health. 2015;15:19. (PMID: 10.1186/s12940-016-0117-0)
Landrigan PJ, Belpoggi F. The need for independent research on the health effects of glyphosate-based herbicides. Environ Health. 2018;17(1):51. (PMID: 10.1186/s12940-018-0392-z)
Krimsky S, Gillam C. Roundup litigation discovery documents: implications for public health and journal ethics. J Public Health Policy. 2018;39(3):318–26. (PMID: 10.1057/s41271-018-0134-z)
Monsanto International sarl, Monsanto Europe SA. The agronomic benefits of glyphosate in Europe: review of the benefits of glyphosate per market use; 2010. p. 1–82. http://www.monsanto.com/products/documents/glyphosate-background-materials/agronomic%20benefits%20of%20glyphosate%20in%20europe.pdf.
Benbrook CM. Why regulators lost track and control of pesticide risks: lessons from the case of glyphosate-based herbicides and genetically engineered-crop technology. Curr Environ Health Rep. 2018;5(3):387–95. (PMID: 10.1007/s40572-018-0207-y)
Benbrook CM, Davis DR. The dietary risk index system: a tool to track pesticide dietary risks. Environ Health. 2020;19(1):103. (PMID: 10.1186/s12940-020-00657-z)
Bolognesi C, Castle L, Cravedi JP, Engel KH, Fowler PAF, Franz R, et al. EFSA: scientific opinion on the risks to public health related to the presence of bisphenol a (BPA) in foodstuffs – executive summary. EFSA J. 2015;13(1):3978. (PMID: 10.2903/j.efsa.2015.3978)
Bernier MR, Vandenberg LN. Handling of thermal paper: implications for dermal exposure to bisphenol a and its alternatives. PLoS One. 2017;12(6):e0178449. (PMID: 10.1371/journal.pone.0178449)
Sathyanarayana S, Braun JM, Yolton K, Liddy S, Lanphear BP. Case report: high prenatal bisphenol a exposure and infant neonatal neurobehavior. Environ Health Perspect. 2011;119(8):1170–5. (PMID: 10.1289/ehp.1003064)
Biedermann S, Tschudin P, Grob K. Transfer of bisphenol a from thermal printer paper to the skin. Anal Bioanal Chem. 2010;398(1):571–6. (PMID: 10.1007/s00216-010-3936-9)
Zalko D, Jacques C, Duplan H, Bruel S, Perdu E. Viable skin efficiently absorbs and metabolizes bisphenol a. Chemosphere. 2011;82(3):424–30. (PMID: 10.1016/j.chemosphere.2010.09.058)
Liao C, Kannan K. Widespread occurrence of bisphenol a in paper and paper products: implications for human exposure. Environ Sci Technol. 2011;45(21):9372–9. (PMID: 10.1021/es202507f)
Geens T, Goeyens L, Kannan K, Neels H, Covaci A. Levels of bisphenol-a in thermal paper receipts from Belgium and estimation of human exposure. Sci Total Environ. 2012;435-436:30–3. (PMID: 10.1016/j.scitotenv.2012.07.001)
Demierre AL, Peter R, Oberli A, Bourqui-Pittet M. Dermal penetration of bisphenol a in human skin contributes marginally to total exposure. Toxicol Lett. 2012;213(3):305–8. (PMID: 10.1016/j.toxlet.2012.07.001)
Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, et al. Transdermal uptake of diethyl phthalate and Di(n-butyl) phthalate directly from air: experimental verification. Environ Health Perspect. 2015;123(10):928–34. (PMID: 10.1289/ehp.1409151)
Hegstad M. EPA seeks input on competing exposure methods for new TSCA reviews. Inside EPA's Risk Policy Rep. 2016;23(33):5–7.
Neltner TG, Kulkarni NR, Alger HM, Maffini MV, Bongard ED, Fortin ND, et al. Navigating the US food additive regulatory program. Compr Rev Food Sci Food Saf. 2011;10(6):342–68. (PMID: 10.1111/j.1541-4337.2011.00166.x)
Jones HM, Mayawala K, Poulin P. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches. AAPS J. 2013;15(2):377–87. (PMID: 10.1208/s12248-012-9446-2)
Punt A, Peijnenburg A, Hoogenboom R, Bouwmeester H. Non-animal approaches for toxicokinetics in risk evaluations of food chemicals. Altex. 2017;34(4):501–14.
Vandenberg LN, Hunt PA, Myers JP, Vom Saal FS. Human exposures to bisphenol a: mismatches between data and assumptions. Rev Environ Health. 2013;28(1):37–58. (PMID: 10.1515/reveh-2012-0034)
Clewell HJ, Campbell JL, Van Landingham C, Franzen A, Yoon M, Dodd DE, et al. Incorporation of in vitro metabolism data and physiologically based pharmacokinetic modeling in a risk assessment for chloroprene. Inhal Toxicol. 2019;31(13–14):468–83. (PMID: 10.1080/08958378.2020.1715513)
Melnick RL, Sills RC, Portier CJ, Roycroft JH, Chou BJ, Grumbein SL, et al. Multiple organ carcinogenicity of inhaled chloroprene (2-chloro-1,3-butadiene) in F344/N rats and B6C3F1 mice and comparison of dose-response with 1,3-butadiene in mice. Carcinogenesis. 1999;20(5):867–78. (PMID: 10.1093/carcin/20.5.867)
Versar I. External peer review of a report on physiologically based pharmacokinetic (PBPK) modeling for chloroprene (Ramboll, 2020) and a supplemental analysis of metabolite clearance (U.S. EPA, 2020). In: Post-meeting peer review summary report; 2020.
Abduljalil K, Badhan RKS. Drug dosing during pregnancy-opportunities for physiologically based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2020;47(4):319–40. (PMID: 10.1007/s10928-020-09698-w)
Verscheijden LFM, Koenderink JB, Johnson TN, de Wildt SN, Russel FGM. Physiologically-based pharmacokinetic models for children: starting to reach maturation? Pharmacol Ther. 2020;211:107541. (PMID: 10.1016/j.pharmthera.2020.107541)
Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ Health Perspect. 2011;119(6):878–85. (PMID: 10.1289/ehp.1002727)
Frank R, Sirons G. Atrazine: its use in corn production and its loss to stream waters in southern Ontario, 1975–1977. Sci Total Environ. 1979;12(3):223–39. (PMID: 10.1016/0048-9697(79)90088-3)
Premazzi G, Stecchi R. Evaluation of the impact of atrazine on the aquatic environment: Office for Official Publications of the European Communities; 1990.
Hayes TB, Anderson LL, Beasley VR, de Solla SR, Iguchi T, Ingraham H, et al. Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J Steroid Biochem Mol Biol. 2011;127(1–2):64–73. (PMID: 10.1016/j.jsbmb.2011.03.015)
US CDC. Atrazine and metabolites (UAM_E). In: National Health and nutrition examination survey: 007–2008 data documentation, codebook, and frequencies; 2015. https://wwwn.cdc.gov/Nchs/Nhanes/2007-2008/UAM_E.htm .
Barr DB, Panuwet P, Nguyen JV, Udunka S, Needham LL. Assessing exposure to atrazine and its metabolites using biomonitoring. Environ Health Perspect. 2007;115(10):1474–8. (PMID: 10.1289/ehp.10141)
Blount BC, Silva MJ, Caudill SP, Needham LL, Pirkle JL, Sampson EJ, et al. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000;108(10):979–82. (PMID: 10.1289/ehp.00108979)
Kato K, Silva MJ, Reidy JA, Hurtz D, Malek NA, Needham LL, et al. Mono(2-ethyl-5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as biomarkers for human exposure assessment to di-(2-ethylhexyl) phthalate. Environ Health Perspect. 2004;112(3):327–30. (PMID: 10.1289/ehp.6663)
Wang L, Kannan K. Alkyl protocatechuates as novel urinary biomarkers of exposure to p-hydroxybenzoic acid esters (parabens). Environ Int. 2013;59:27–32. (PMID: 10.1016/j.envint.2013.05.001)
Congress, U. S., & Congress, U. S. Public Law 114-182-Frank R. Lautenberg Chemical Safety for the 21st Century Act. 2016.
Singla VI, Sutton PM, Woodruff TJ. The Environmental Protection Agency toxic substances control act systematic review method may curtail science used to inform policies, with profound implications for public health. Am J Public Health. 2019;109(7):982–4. (PMID: 10.2105/AJPH.2019.305068)
Kassotis CD, Vandenberg LN, Demeneix B, Porta M, Slama R, Trasande L. Endocrine disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 2020;8(8):719–30. (PMID: 10.1016/S2213-8587(20)30128-5)
Vandenberg LN. Reform of the toxic substances control act (TSCA): an endocrine society policy perspective. Endocrinology. 2016;157(12):4514–5. (PMID: 10.1210/en.2016-1712)
Lallas PL. The Stockholm convention on persistent organic pollutants. Am J Int Law. 2001;95(3):692–708. (PMID: 10.2307/2668517)
Schafer KS, Kegley SE. Persistent toxic chemicals in the US food supply. J Epidemiol Community Health. 2002;56(11):813–7. (PMID: 10.1136/jech.56.11.813)
Fang J, Nyberg E, Winnberg U, Bignert A, Bergman A. Spatial and temporal trends of the Stockholm convention POPs in mothers' milk -- a global review. Environ Sci Pollut Res Int. 2015;22(12):8989–9041. (PMID: 10.1007/s11356-015-4080-z)
Bogdal C, Niggeler N, Glüge J, Diefenbacher PS, Wächter D, Hungerbühler K. Temporal trends of chlorinated paraffins and polychlorinated biphenyls in Swiss soils. Environ Pollut. 2017;220(Pt B):891–9. (PMID: 10.1016/j.envpol.2016.10.073)
Cordner A, Brown P. A multisector alliance approach to environmental social movements: flame retardants and chemical reform in the United States. Environ Sociol. 2015;1(1):69–79. (PMID: 10.1080/23251042.2015.1016685)
Tyrrell J, Melzer D, Henley W, Galloway TS, Osborne NJ. Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001–2010. Environ Int. 2013;59:328–35. (PMID: 10.1016/j.envint.2013.06.017)
Justice IoMCoE: Toward environmental justice: research, education, and health policy needs. 1999.
Morello-Frosch R, Shenassa ED. The environmental “riskscape” and social inequality: implications for explaining maternal and child health disparities. Environ Health Perspect. 2006;114(8):1150–3. (PMID: 10.1289/ehp.8930)
O'Neill MS, Jerrett M, Kawachi I, Levy JI, Cohen AJ, Gouveia N, et al. Health, wealth, and air pollution: advancing theory and methods. Environ Health Perspect. 2003;111(16):1861–70. (PMID: 10.1289/ehp.6334)
Goin DE, Gomez AM, Farkas K, Duarte C, Karasek D, Chambers BD, et al. Occurrence of fatal police violence during pregnancy and hazard of preterm birth in California. Paediatr Perinat Epidemiol. 2021;35:469–78. (PMID: 10.1111/ppe.12753)
Sampson RJ, Winter AS. The racial ecology of lead poisoning: toxic inequality in Chicago neighborhoods, 1995-2013. Du Bois Rev. 2016;13(2):261–83. (PMID: 10.1017/S1742058X16000151)
Senier L, Brown P, Shostak S, Hanna B. The socio-exposome: advancing exposure science and environmental justice in a postgenomic era. Environ Sociol. 2017;3(2):107–21. (PMID: 10.1080/23251042.2016.1220848)
Hertzberg R, Choudhury H, Rice G, Cogliano J, Mukerjee D, Teuschler L. Supplementary guidance for conducting health risk assessment of chemical mixtures. In: Washington, DC, risk assessment forum technical panel: 2000; 2000.
Committee ES, More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 2019;17(3):e05634.
Jones-Otazo HA, Clarke JP, Diamond ML, Archbold JA, Ferguson G, Harner T, et al. Is house dust the missing exposure pathway for PBDEs? An analysis of the urban fate and human exposure to PBDEs. Environ Sci Technol. 2005;39(14):5121–30. (PMID: 10.1021/es048267b)
Stapleton HM, Kelly SM, Allen JG, McClean MD, Webster TF. Measurement of polybrominated diphenyl ethers on hand wipes: estimating exposure from hand-to-mouth contact. Environ Sci Technol. 2008;42(9):3329–34. (PMID: 10.1021/es7029625)
Varshavsky J, Smith A, Wang A, Hom E, Izano M, Huang H, et al. Heightened susceptibility: a review of how pregnancy and chemical exposures influence maternal health. Reprod Toxicol. 2020;92:14–56. (PMID: 10.1016/j.reprotox.2019.04.004)
US EPA. Exposure factors handbook, vol. 1. OH, USA: United States Environmental Protection Agency Cincinnati; 1997.
NRC. Toxicity testing in the 21st century: a vision and a strategy. In: Edited by Committee on toxicity testing and assessment of environmental agents BoESaT, Institute for Laboratory Animal Research, division on earth and life studies. Washington, DC: The National Academies; 2007.
Demeneix B, Vandenberg LN, Ivell R, Zoeller RT. Thresholds and endocrine disruptors: an Endocrine Society policy perspective. J Endocr Soc. 2020;4(10):bvaa085. (PMID: 10.1210/jendso/bvaa085)
US EPA. Choosing a percentile of acute dietary exposure as a threshold of regulatory concern. In: Edited by Office of Pesticide Programs USEPA, Washington, D.C. 20460; 2000. https://www.epa.gov/sites/production/files/2015-07/documents/trac2b054_0.pdf .
Executive Office of the President. Methods and leading practices for advancing equity and support for underserved communities through government. In: Edited by Office of Management and Budget, vol. 86 FR 24029. Federal Register: National Archives; 2021. p. 24029–32.
Reams MA, Irving JK. Applying community resilience theory to engagement with residents facing cumulative environmental exposure risks: lessons from Louisiana's industrial corridor. Rev Environ Health. 2019;34(3):235–44. (PMID: 10.1515/reveh-2019-0022)
Richard AM, Judson RS, Houck KA, Grulke CM, Volarath P, Thillainadarajah I, et al. ToxCast chemical landscape: paving the road to 21st century toxicology. Chem Res Toxicol. 2016;29(8):1225–51. (PMID: 10.1021/acs.chemrestox.6b00135)
Wambaugh JF, Setzer RW, Reif DM, Gangwal S, Mitchell-Blackwood J, Arnot JA, et al. High-throughput models for exposure-based chemical prioritization in the ExpoCast project. Environ Sci Technol. 2013;47(15):8479–88.
Butler LJ, Scammell MK, Benson EB. The Flint, Michigan, water crisis: a case study in regulatory failure and environmental injustice. Environ Justice. 2016;9(4):93–7. (PMID: 10.1089/env.2016.0014)
Bullard RD, Johnson GS, Wright BH. Confronting environmental injustice: It's the right thing to do. Race Gender Class. 1997;5(1):63–79.
Diaz RS. Getting to the root of environmental injustice: evaluating claims, causes, and solutions. Geo Envtl L Rev. 2016;29:767.
Sullivan J, Parady K. “Keep working for environmental justice no matter how bleak things look. Don’t give up. Don’t just go away”: an interview with Wilma Subra. New Solut. 2018;28(3):487–500. (PMID: 10.1177/1048291118795161)
Campbell C, Greenberg R, Mankikar D, Ross RD. A case study of environmental injustice: the failure in Flint. Int J Environ Res Public Health. 2016;13(10):951. (PMID: 10.3390/ijerph13100951)
Sullivan J, Croisant S, Howarth M, Subra W, Orr M, Elferink C. Implications of the GC-HARMS Fishermen’s citizen science network: issues raised, lessons learned, and next steps for the network and citizen science. New Solut. 2019;28(4):570–98. (PMID: 10.1177/1048291118810871)
Grant Information:
P30 ES030284 United States ES NIEHS NIH HHS
Contributed Indexing:
Keywords: Biomonitoring; Physiologically based toxicokinetic model; Superfund; Toxic substances control act; US Environmental Protection Agency; Uncertainty
Substance Nomenclature:
0 (Environmental Pollutants)
Entry Date(s):
Date Created: 20230112 Date Completed: 20230116 Latest Revision: 20230215
Update Code:
20240105
PubMed Central ID:
PMC9835264
DOI:
10.1186/s12940-022-00917-0
PMID:
36635700
Czasopismo naukowe
Background: Understanding, characterizing, and quantifying human exposures to environmental chemicals is critical to protect public health. Exposure assessments are key to determining risks to the general population and for specific subpopulations given that exposures differ between groups. Exposure data are also important for understanding where interventions, including public policies, should be targeted and the extent to which interventions have been successful. In this review, we aim to show how inadequacies in exposure assessments conducted by polluting industries or regulatory agencies have led to downplaying or disregarding exposure concerns raised by communities; that underestimates of exposure can lead regulatory agencies to conclude that unacceptable risks are, instead, acceptable, allowing pollutants to go unregulated; and that researchers, risk assessors, and policy makers need to better understand the issues that have affected exposure assessments and how appropriate use of exposure data can contribute to health-protective decisions.
Methods: We describe current approaches used by regulatory agencies to estimate human exposures to environmental chemicals, including approaches to address limitations in exposure data. We then illustrate how some exposure assessments have been used to reach flawed conclusions about environmental chemicals and make recommendations for improvements.
Results: Exposure data are important for communities, public health advocates, scientists, policy makers, and other groups to understand the extent of environmental exposures in diverse populations. We identify four areas where exposure assessments need to be improved due to systemic sources of error or uncertainty in exposure assessments and illustrate these areas with examples. These include: (1) an inability of regulatory agencies to keep pace with the increasing number of chemicals registered for use or assess their exposures, as well as complications added by use of 'confidential business information' which reduce available exposure data; (2) the failure to keep assessments up-to-date; (3) how inadequate assumptions about human behaviors and co-exposures contribute to underestimates of exposure; and (4) that insufficient models of toxicokinetics similarly affect exposure estimates.
Conclusion: We identified key issues that impact capacity to conduct scientifically robust exposure assessments. These issues must be addressed with scientific or policy approaches to improve estimates of exposure and protect public health.
(© 2022. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies