Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Temporal variation of the temperature-mortality association in Spain: a nationwide analysis.

Tytuł:
Temporal variation of the temperature-mortality association in Spain: a nationwide analysis.
Autorzy:
Ordanovich D; Institute of Economy, Geography y Demography (IEGD), Spanish National Research Council (CSIC), Madrid, Spain. .
Tobías A; Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain.
Ramiro D; Institute of Economy, Geography y Demography (IEGD), Spanish National Research Council (CSIC), Madrid, Spain.
Źródło:
Environmental health : a global access science source [Environ Health] 2023 Jan 13; Vol. 22 (1), pp. 5. Date of Electronic Publication: 2023 Jan 13.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2002-
MeSH Terms:
Cold Temperature*
Hot Temperature*
Male ; Humans ; Female ; Temperature ; Spain/epidemiology ; Risk Factors ; Mortality
References:
Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology. 2014;25(6):781–9. (PMID: 10.1097/EDE.0000000000000165)
Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;25(9991):369–75. (PMID: 10.1016/S0140-6736(14)62114-0)
Song X, Wang S, Hu Y, Yue M, Zhang T, Liu Y, et al. Impact of ambient temperature on morbidity and mortality: an overview of reviews. Sci Total Environ. 2017;15:241–54. (PMID: 10.1016/j.scitotenv.2017.01.212)
IPCC. Climate Change 2021 the physical science basis, Working Group 1 (WG1) contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press Cambridge, UK; 2021.
Vicedo-Cabrera AM, Guo Y, Sera F, Huber V, Schleussner CF, Mitchell D, et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Climatic Change. 2018;150(3):391–402. (PMID: 10.1007/s10584-018-2274-3)
Amblar Francés P, Casado Calle MJ, Pastor Saavedra A, Ramos Calzado P, Rodríguez Camino E. Guía de escenarios regionalizados de cambio climático sobre España a partir de los resultados del IPCC-AR5. Agencia Estatal de Meteorología; 2017. Available from: http://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/detalles/Guia_escenarios_AR5 . Cited 2022 Aug 16.
Gosling SN, Hondula DM, Bunker A, Ibarreta D, Liu J, Zhang X, et al. Adaptation to Climate Change: a comparative analysis of modeling methods for heat-related mortality. Environ Health Perspect. 2017;16(8):087008. (PMID: 10.1289/EHP634)
Honda Y, Kabuto M, Ono M, Uchiyama I. Determination of optimum daily maximum temperature using climate data. Environ Health Prev Med. 2007;12(5):209–16. (PMID: 10.1265/ehpm.12.209)
Huynen MMTE, Martens P. Climate change effects on heat- and cold-related mortality in the Netherlands: a scenario-based integrated environmental health impact assessment. Int J Environ Res Public Health. 2015;12(10):13295–320. (PMID: 10.3390/ijerph121013295)
Huang C, Barnett AG, Wang X, Vaneckova P, FitzGerald G, Tong S. Projecting future heat-related mortality under climate change scenarios: a systematic review. Environ Health Perspect. 2011;119(12):1681–90. (PMID: 10.1289/ehp.1103456)
Åström C, Tornevi A, Ebi K, Rocklöv J, Forsberg B. Evolution of minimum mortality temperature in Stockholm, Sweden, 1901–2009. Environ Health Perspect. 2016;124(6). Available from: https://pubmed.ncbi.nlm.nih.gov/26566270/ . Cited 2022 Feb 21.
Folkerts MA, Bröde P, Botzen WJW, Martinius ML, Gerrett N, Harmsen CN, et al. Long Term Adaptation to heat stress: shifts in the minimum mortality temperature in the Netherlands. Front Physiol. 2020;11:225. (PMID: 10.3389/fphys.2020.00225)
Todd N, Valleron AJ. Space-time covariation of mortality with temperature: a systematic study of deaths in France, 1968–2009. Environ Health Perspect. 2015;123(7):659–64. (PMID: 10.1289/ehp.1307771)
Bobb JF, Peng RD, Bell ML, Dominici F. Heat-related mortality and adaptation to heat in the United States. Environ Health Perspect. 2014;122(8):811–6. (PMID: 10.1289/ehp.1307392)
Gasparrini A, Guo Y, Hashizume M, Kinney PL, Petkova EP, Lavigne E, et al. Temporal variation in Heat-Mortality Associations: a Multicountry Study. Environ Health Perspect. 2015;123(11):1200–7. (PMID: 10.1289/ehp.1409070)
Ng CFS, Boeckmann M, Ueda K, Zeeb H, Nitta H, Watanabe C, et al. Heat-related mortality: effect modification and adaptation in Japan from 1972 to 2010. Glob Environ Change. 2016;1:234–43. (PMID: 10.1016/j.gloenvcha.2016.05.006)
Chung Y, Yang D, Gasparrini A, Vicedo-Cabrera AM, Fook Sheng Ng C, Kim Y, et al. Changing susceptibility to non-optimum temperatures in Japan, 1972–2012: the role of climate, demographic, and socioeconomic factors. Environ Health Perspect. 2018;126(5):057002. (PMID: 10.1289/EHP2546)
Achebak H, Devolder D, Ballester J. Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain: a national time-series analysis. Lancet Planet Health. 2019;3(7):e297-306. (PMID: 10.1016/S2542-5196(19)30090-7)
Achebak H, Devolder D, Ingole V, Ballester J. Reversal of the seasonality of temperature-attributable mortality from respiratory diseases in Spain. Nat Commun. 2020;20(1):2457. (PMID: 10.1038/s41467-020-16273-x)
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc. 2011;137(656):553–97. (PMID: 10.1002/qj.828)
Hoffmann L, Günther G, Li D, Stein O, Wu X, Griessbach S, et al. From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos Chem Phys. 2019;19(11):3097–124. (PMID: 10.5194/acp-19-3097-2019)
Zhao P, Gao L, Wei J, Ma M, Deng H, Gao J, et al. Evaluation of ERA-interim air temperature data over the Qilian Mountains of China. Adv Meteorol. 2020;10(2020):e7353482.
Royé D, Íñiguez C, Tobías A. Comparison of temperature–mortality associations using observed weather station and reanalysis data in 52 Spanish cities. Environ Res. 2020;1(183):109237. (PMID: 10.1016/j.envres.2020.109237)
Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series regression studies in environmental epidemiology. Int J Epidemiol. 2013;42(4):1187–95. (PMID: 10.1093/ije/dyt092)
Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models. Stat Med. 2010;29(21):2224–34. (PMID: 10.1002/sim.3940)
Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw. 2011;25(43):1–20.
Tobías A, Hashizume M, Honda Y, Sera F, Ng CFS, Kim Y, et al. Geographical variations of the Minimum Mortality temperature at a global scale: a Multicountry Study. Environ Epidemiol. 2021;5(5):e169. (PMID: 10.1097/EE9.0000000000000169)
Iñiguez C, Royé D, Tobías A. Contrasting patterns of temperature related mortality and hospitalization by cardiovascular and respiratory diseases in 52 Spanish cities. Environ Res. 2021;1(192):110191. (PMID: 10.1016/j.envres.2020.110191)
Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med Res Methodol. 2014;14(1):55. (PMID: 10.1186/1471-2288-14-55)
Vicedo-Cabrera AM, Sera F, Guo Y, Chung Y, Arbuthnott K, Tong S, et al. A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ Int. 2018;111:239–46. (PMID: 10.1016/j.envint.2017.11.006)
Martínez-Solanas È, Basagaña X. Temporal changes in temperature-related mortality in Spain and effect of the implementation of a Heat Health Prevention Plan. Environ Res. 2019;169:102–13. (PMID: 10.1016/j.envres.2018.11.006)
de Sanidad M. Consumo y Bienestar Social. Plan Nacional de Actuaciones Preventivas de los Efectos del Exceso de Temperaturas sobre la Salud. 2004. Available from: https://www.sanidad.gob.es/excesoTemperaturas2022/consultar.do .
Sera F, Gasparrini A. Extended two-stage designs for environmental research. Environ Health. 2022;21(1):41. (PMID: 10.1186/s12940-022-00853-z)
Chazarra A, Lorenzo B, Rodriguez C, Botey R. Análisis de las temperaturas en España en el periodo 1961–2018. Volumen 2 series de temperaturas medias en España a partir de estaciones de referencia (nota técnica 31.2 de AEMET). Agencia Estatal de Meteorología; 2020. Available from: http://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/detalles/NT31_AEMET .
Barrett JR. Increased Minimum Mortality temperature in France: data suggest humans are adapting to Climate Change. Environ Health Perspect. 2015;123(7):A184. (PMID: 10.1289/ehp.123-A184)
Achebak H, Devolder D, Ballester J. Heat-related mortality trends under recent climate warming in Spain: a 36-year observational study. PLoS Med. 2018;15(7):e1002617. (PMID: 10.1371/journal.pmed.1002617)
Boeckmann M, Rohn I. Is planned adaptation to heat reducing heat-related mortality and illness? A systematic review. BMC Public Health. 2014;14(1):1112. (PMID: 10.1186/1471-2458-14-1112)
Buckley JP, Samet JM, Richardson DB. Commentary. Does air pollution confound studies of temperature? Epidemiology. 2014;25(2):242–5. (PMID: 10.1097/EDE.0000000000000051)
Lee WH, Lim YH, Dang TN, Seposo X, Honda Y, Guo YLL, et al. An investigation on attributes of ambient temperature and diurnal temperature range on mortality in five East-Asian Countries. Sci Rep. 2017;31(1):10207. (PMID: 10.1038/s41598-017-10433-8)
Armstrong B, Bell ML, de Sousa Zanotti Stagliorio Coelho M, Leon Guo YL, Guo Y, Goodman P, et al. Longer-term impact of high and low temperature on mortality: an International Study to clarify length of Mortality Displacement. Environ Health Perspect. 2017;27(10):107009. (PMID: 10.1289/EHP1756)
Vicedo-Cabrera AM, Scovronick N, Sera F, Royé D, Schneider R, Tobias A, et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat Clim Chang. 2021;11(6):492–500. (PMID: 10.1038/s41558-021-01058-x)
Contributed Indexing:
Keywords: Adaptation; Climate change; Distributed lag non-linear models; Temperature; Time-series regression
Entry Date(s):
Date Created: 20230112 Date Completed: 20230116 Latest Revision: 20231123
Update Code:
20240105
PubMed Central ID:
PMC9838025
DOI:
10.1186/s12940-022-00957-6
PMID:
36635705
Czasopismo naukowe
Background: Although adaptation to continuously rising ambient temperatures is an emerging topic and has been widely studied at a global scale, detailed analysis of the joint indicators for long-term adaptation in Spain are scarce. This study aims to explore temporal variations of the minimum mortality temperature and mortality burden from heat and cold between 1979 and 2018.
Methods: We collected individual all-cause mortality and climate reanalysis data for 4 decades at a daily time step. To estimate the temperature-mortality association for each decade, we fitted a quasi-Poisson time-series regression model using a distributed lag non-linear model with 21 days of lag, controlling for trends and day of the week. We also calculated attributable mortality fractions by age and sex for heat and cold, defined as temperatures above and below the optimum temperature, which corresponds to the minimum mortality in each period.
Results: We analysed over 14 million deaths registered in Spain between 1979 and 2018. The optimum temperature estimated at a nationwide scale declined from 21 °C in 1979-1988 to 16 °C in 1999-2008, and raised to 18 °C in 2009-2018. The mortality burden from moderate cold showed a 3-fold reduction down to 2.4% in 2009-2018. Since 1988-1999, the mortality risk attributable to moderate (extreme) heat reduced from 0.9% (0.8%) to 0.6% (0.5%). The mortality risk due to heat in women was almost 2 times larger than in men, and did not decrease over time.
Conclusion: Despite the progressively warmer temperatures in Spain, we observed a persistent flattening of the exposure-response curves, which marked an expansion of the uncertainty range of the optimal temperatures. Adaptation has been produced to some extent in a non-uniform manner with a substantial decrease in cold-related mortality, while for heat it became more apparent in the most recent decade only.
(© 2023. The Author(s).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies